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Abstract 

This work provides a contribution to a better understanding of the trophic ecology of important 
predators in the Northern Humboldt Current System, the jack mackerel (Trachurus murphyi), the 
chub mackerel (Scomber japonicus) and the jumbo squid (Dosidicus gigas) by the characterization of 
the highly variable feeding patterns of these species at different spatiotemporal scales. We 
provided new knowledge on the comparative trophic behaviour of these species, defined as 
opportunistic in previous investigations. For that purpose we applied a variety of statistical 
methods to an extensive dataset of 27,188 non-empty stomachs. We defined the spatial 
organization of the forage fauna of these predators and documented changes in prey composition 
according to predators’ size and spatiotemporal features of environment. Our results highligh the 
key role played by the dissolved oxygen. We also deciphered an important paradox on the jumbo 
squid diet: why do they hardly forage on the huge anchovy (Engraulis ringens) biomass 
distributed of coastal Peru? We showed that the shallow oxygen minimum zone present off 
coastal Peru could hamper the co-occurrence of jumbo squids and anchovies. In addition, we 
proposed a conceptual model on jumbo squid trophic ecology including the ontogenetic cycle, 
oxygen and prey availability. Moreover we showed that the trophic behaviour of jack mackerel 
and chub mackerel is adapted to forage on more accessible species such as for example the squat 
lobster Pleurocondes monodon and Zoea larvae. Besides, both predators present a trophic overlap. 
But jack mackerel was not as voracious as chub mackerel, contradictorily to what was observed 
by others authors. Fish diet presented a high spatiotemporal variability, and the shelf break 
appeared as a strong biogeographical frontier. Diet composition of our fish predators was not 
necessarily a consistent indicator of changes in prey biomass. El Niño events had a weak effect on 
the stomach fullness and diet composition of chub mackerel and jack mackerel. Moreover, 
decadal changes in diet diversity challenged the classic paradigm of positive correlation between 
species richness and temperature. Finally, the global patterns that we described in this work, 
illustrated the opportunistic foraging behaviour, life strategies and the high degree of plasticity of 
these species. Such behaviour allows adaptation to changes in the environment. 
 

Key words: Dosidicus gigas, Trachurus murphyi, Scomber japonicus, trophic behaviour, Northern 
Humboldt Current system, Peru. 
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Résumé 

Ce travail est une contribution à l'étude de l'écologie trophique d'importants prédateurs de la 
partie Nord du système du Courant de Humboldt (NSCH), le chinchard (Trachurus murphyi), le 
maquereau (Scomber japonicus) et le calmar géant (Dosidicus gigas). Nous avons caractérisé la 
variabilité des modes d'alimentation de ces espèces à différentes échelles spatiotemporelles et 
fourni de nouvelles connaissances sur le comportement alimentaire de ces espèces, définies 
comme opportunistes par des travaux antérieurs. Pour ce faire, nous avons appliqué une variété 
de méthodes statistiques à un vaste jeu de données comprenant 27188 estomacs non vides. Sur 
cette base nous avons décri l'organisation spatiale de la faune fourrage de ces prédateurs et 
documenté les changements dans la composition des proies en fonction de la taille de prédateurs 
et des conditions environnementales. Nos résultats indiquent que l'oxygène dissous jour un rôle 
clef dans ces processus. Nous avons également résolu un paradoxe sur l'alimentation du calmar 
géant: pourquoi ils ne se nourrissent guère sur l'immense biomasse d'anchois (Engraulis ringens) 
présente le long de la côte du Pérou? Nous avons montré que la présence d'une zone de 
minimum d'oxygène (ZMO) superficielle devant le Pérou pourrait limiter la cooccurrence entre 
calmars géant et anchois. Pour synthétiser ces résultats, nous avons proposé un modèle 
conceptuel de l'écologie trophique du calmar géant tenant compte du cycle ontogénétique, de 
l'oxygène et de la disponibilité des proies. Par ailleurs, nous avons montré que le chinchard et le 
maquereau  se nourrissent des espèces les plus accessibles comme par exemple la galathée 
Pleurocondes monodon ou les larves zoea. Ces deux prédateurs présentent un chevauchement 
trophique mais, contrairement à ce qui avait été décrit dans d'autres études, le chinchard n'est 
pas aussi vorace que le maquereau. Le régime alimentaire de ces poissons est caractérisé par une 
forte variabilité spatio-temporelle et le talus continental  s'avère être une importante frontière 
biogéographique. La composition du régime alimentaire des poissons prédateurs étudiés n'est 
pas nécessairement un indicateur cohérent de l'évolution de la biomasse des proies. Les 
événements El Niño ont eu un faible effet sur le taux de remplissage des estomacs et  sur le 
régime alimentaire du chinchard et du maquereau. Par ailleurs les changes en diversité des 
proies à échelle décennale  contredisent le classique paradigme de corrélation positive entre 
diversité et la température. Finalement, les patrons globaux décrits dans ce travail, illustrent le 
comportement alimentaire opportuniste les stratégies de vie et le haut degré de plasticité de ces 
espèces. Un tel comportement permet de s'adapter aux changements de l'environnement. 
 
Mots clefs: Dosidicus gigas, Trachurus murphyi, Scomber japonicus, comportement alimentaire, 
Nord du système du Courant de Humboldt, Pérou. 
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Abstract 
This work provides a contribution to a better understanding of the trophic ecology of important 
predators in the Northern Humboldt Current System, the jack mackerel (Trachurus murphyi), the 
chub mackerel (Scomber japonicus) and the jumbo squid (Dosidicus gigas) by the characterization of 
the highly variable feeding patterns of these species at different spatiotemporal scales. We 
provided new knowledge on the comparative trophic behaviour of these species, defined as 
opportunistic in previous investigations. For that purpose we applied a variety of statistical 
methods to an extensive dataset of 27,188 non-empty stomachs. We defined the spatial 
organization of the forage fauna of these predators and documented changes in prey composition 
according to predators’ size and spatiotemporal features of environment. Our results highligh the 
key role played by the dissolved oxygen. We also deciphered an important paradox on the jumbo 
squid diet: why do they hardly forage on the huge anchovy (Engraulis ringens) biomass 
distributed of coastal Peru? We showed that the shallow oxygen minimum zone present off 
coastal Peru could hamper the co-occurrence of jumbo squids and anchovies. In addition, we 
proposed a conceptual model on jumbo squid trophic ecology including the ontogenetic cycle, 
oxygen and prey availability. Moreover we showed that the trophic behaviour of jack mackerel 
and chub mackerel is adapted to forage on more accessible species such as for example the squat 
lobster Pleurocondes monodon and Zoea larvae. Besides, both predators present a trophic overlap. 
But jack mackerel was not as voracious as chub mackerel, contradictorily to what was observed 
by others authors. Fish diet presented a high spatiotemporal variability, and the shelf break 
appeared as a strong biogeographical frontier. Diet composition of our fish predators was not 
necessarily a consistent indicator of changes in prey biomass. El Niño events had a weak effect on 
the stomach fullness and diet composition of chub mackerel and jack mackerel. Moreover, 
decadal changes in diet diversity challenged the classic paradigm of positive correlation between 
species richness and temperature. Finally, the global patterns that we described in this work, 
illustrated the opportunistic foraging behaviour, life strategies and the high degree of plasticity of 
these species. Such behaviour allows adaptation to changes in the environment. 
 
Key words: Dosidicus gigas, Trachurus murphyi, Scomber japonicus, trophic behaviour, Northern 
Humboldt Current system, Peru. 
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Résumé 
Ce travail est une contribution à l'étude de l'écologie trophique d'importants prédateurs de la 
partie Nord du système du Courant de Humboldt (NSCH), le chinchard (Trachurus murphyi), le 
maquereau (Scomber japonicus) et le calmar géant (Dosidicus gigas). Nous avons caractérisé la 
variabilité des modes d'alimentation de ces espèces à différentes échelles spatiotemporelles et 
fourni de nouvelles connaissances sur le comportement alimentaire de ces espèces, définies 
comme opportunistes par des travaux antérieurs. Pour ce faire, nous avons appliqué une variété 
de méthodes statistiques à un vaste jeu de données comprenant 27188 estomacs non vides. Sur 
cette base nous avons décri l'organisation spatiale de la faune fourrage de ces prédateurs et 
documenté les changements dans la composition des proies en fonction de la taille de prédateurs 
et des conditions environnementales. Nos résultats indiquent que l'oxygène dissous jour un rôle 
clef dans ces processus. Nous avons également résolu un paradoxe sur l'alimentation du calmar 
géant: pourquoi ils ne se nourrissent guère sur l'immense biomasse d'anchois (Engraulis ringens) 
présente le long de la côte du Pérou? Nous avons montré que la présence d'une zone de 
minimum d'oxygène (ZMO) superficielle devant le Pérou pourrait limiter la cooccurrence entre 
calmars géant et anchois. Pour synthétiser ces résultats, nous avons proposé un modèle 
conceptuel de l'écologie trophique du calmar géant tenant compte du cycle ontogénétique, de 
l'oxygène et de la disponibilité des proies. Par ailleurs, nous avons montré que le chinchard et le 
maquereau  se nourrissent des espèces les plus accessibles comme par exemple la galathée 
Pleurocondes monodon ou les larves zoea. Ces deux prédateurs présentent un chevauchement 
trophique mais, contrairement à ce qui avait été décrit dans d'autres études, le chinchard n'est 
pas aussi vorace que le maquereau. Le régime alimentaire de ces poissons est caractérisé par une 
forte variabilité spatio-temporelle et le talus continental  s'avère être une importante frontière 
biogéographique. La composition du régime alimentaire des poissons prédateurs étudiés n'est 
pas nécessairement un indicateur cohérent de l'évolution de la biomasse des proies. Les 
événements El Niño ont eu un faible effet sur le taux de remplissage des estomacs et  sur le 
régime alimentaire du chinchard et du maquereau. Par ailleurs les changes en diversité des 
proies à échelle décennale  contredisent le classique paradigme de corrélation positive entre 
diversité et la température. Finalement, les patrons globaux décrits dans ce travail, illustrent le 
comportement alimentaire opportuniste les stratégies de vie et le haut degré de plasticité de ces 
espèces. Un tel comportement permet de s'adapter aux changements de l'environnement. 
 
Mots clefs: Dosidicus gigas, Trachurus murphyi, Scomber japonicus, comportement alimentaire, 
Nord du système du Courant de Humboldt, Pérou. 
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Chapter I 

General Introduction 

Eastern Boundary Upwelling systems (EBUS) including the Humboldt, Canary, Benguela, and 

California Current systems (Figure 1.1), are among the most productive marine ecosystems in the 

world (Chavez and Messié, 2009; Fréon et al., 2009). In their near shore upwelling zones, high 

primary and secondary productivity support large biomasses of small planktivorous pelagic 

fishes, or ‘‘small pelagics”, which through predator-prey interactions can influence both higher 

and lower trophic levels through trophic controls (Cury et al., 2000). Those four EBUS represent 

~0.3% of the world surface oceans (Carr and Kearns, 2003) but produce about 20% of the world’s 

fish catches, contributing to securing food and livelihood strategies in many developing countries 

(Fréon et al., 2009). Among EBUS Northern Humboldt Current system (NHCS) located off the 

Peruvian coast has stood as the ‘‘world’s champion” producer, by far, of exploitable fish biomass 

(Chavez et al., 2008). It represents less than 0.1% of the world ocean surface but presently sustains 

about 10% of the world fish catch. It produces more fish landings than the other EBUSs both total 

and on a per area basis (Chavez et al., 2008). However, remote sensing-based estimates of primary 

production rank the NHCS third only (Figure 1.2), behind the Benguela and Canary Current 

systems (Carr, 2002; Chavez et al., 2008). Between 1950 and 2012, more than 275 millions of tonnes 

of anchovy have been landed in Peru (FAO, 2014a). The fisheries sector is a key component of 

Peruvian economy, mainly as a significant source of foreign currency, after mining. The marine 

fisheries sector generates directly and indirectly more than 145,000 employments with an export 

value of 2.432 billion US dollars in 2008 (FAO, 2014b). Catches are traditionally based on marine 

pelagic resources, mainly anchovy and other species such as jack mackerel and chub mackerel. But 

other resources including dolphinfish (perico) (Coryphaena hippurus; Linnaeus, 1758) and 

invertebrates such as the jumbo squid are now exploited (FAO, 2014b). 

In a way, this apparent paradox of a high fish productivity with a median primary 

productivity in the NHCS supports the hypothesis of a greater food chain efficiency for that EBUS 

(Cury and Roy, 1989; Taylor et al., 2008). Indeed the NHCS proximity to the equator and large 

Rossby radius results in strong and sustained upwelling under relatively mild wind forcing (Cury 

and Roy, 1989; Bakun, 1996). Thus the large scale wind and circulation patterns provide, 
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respectively, the driving force for upwelling and the optimal nutrient concentration for significant 

biological production (Carr and Kearns, 2003). These conditions create a ‘‘particularly rich, non-

turbulent, benign environment” by which rich coastal plankton communities develop and persist, 

in turn supporting abundant populations of small pelagics (Bakun and Weeks, 2008).   

 

Figure 1.1. Basin-scale maps of mean sea surface temperature (SST) and winds (a). Chlorophyll (b), first 

empirical orthogonal function of SST (c), and trend in SST from 1981 to 2008 (d) showing the location of the 

Eastern Boundary Upwelling Systems (EBUS). SST is Reynolds et al. (2007) monthly averaged from 

October 1981 to February 2007; winds are QuikSCAT monthly averaged from July 1999 to April 2008; 

chlorophyll is SeaWiFS monthly climatology averaged over the year. The EOF analysis uses the same 

methodology as produces the Pacific Decadal Oscillation (PDO; Mantua et al., 1997), first removing the 

global trend and then seasonal cycle at each pixel, but in this case for the Atlantic and Pacific basins (and 

globally in Chavez et al., 2008) rather than just the North Pacific (Source: Chavez and Messié, 2009). 
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On the other hand, the NHCS is the region where El Niño Southern Oscillation (ENSO) and 

climatic variability in general are most notable. The NHCS and its living resources are therefore 

directly impacted by an intense and highly variable climate forcing at different spatiotemporal 

scales (e.g., climate change, secular, decadal, inter-annual, seasonal and intra seasonal variabilities) 

(Chavez et al., 2008). 

 

Figure 1.2. Fish catch versus primary productivity for the four main eastern boundary coastal upwelling 

ecosystems for the years 1998-2005. Source: Chavez et al. (2008). 

Earlier studies have shown an overwhelming numerical dominance of phytoplankton in 

forage fish stomach contents (Rojas de Mendiola et al., 1969; Pauly et al., 1989) and led to the belief 

that the large populations of small pelagic fish in the NHCS were fuelled by an unusually short 

and efficient food chain (Ryther, 1969). However, recent works (Espinoza and Bertrand, 2014, 2008; 

Espinoza, 2014; Espinoza et al., 2009) demonstrated that the most important source of calories for 

anchovy and sardine (Sardinops sagax; Jenyns, 1842) is indeed zooplankton (primarily euphausiids 

and large copepods), refuting the former paradigm on the trophic pathways in the NHCS. 

Considering the importance of forage fish in the ecosystem, these results impose revisiting trophic 

flows and more generally ecosystem functioning in the NHCS. The efficient energetic transfer from 

one trophic level to another in the NHCS suggests that zooplankton production could be higher in 

the NHCS than in other upwelling systems. This higher secondary production could be related to a 

more efficient use of primary production by zooplankton and/or a strong connection between the 
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coastal and the offshore pelagic ecosystems, this last argument may particularly apply to the 

euphausiids (Espinoza and Bertrand, 2008). 

In this context the main objective of this study is to better understand the trophic behavior of 

important predators in the NHCS, namely the jack mackerel (Trachurus murphyi), the chub 

mackerel (Scomber japonicus) and the jumbo squid (Dosidicus gigas). For that purpose, this study is 

organized in the following chapters:  

Chapter II provides an outline of the main characteristics of NHCS in order to help the lector 

to contextualize and interpret the following chapters. We first describe the physical and chemical 

oceanography, the primary and secondary production, and the main resources from pelagic fishes 

to squid. Second, we synthesize the main temporal dynamics affecting the NHCS and propose 

general description of each studied species. 

Chapter III addresses the spatiotemporal patterns of the jumbo squid trophic ecology in the 

NHCS. We investigate the ontogenetic and spatiotemporal variability of the diet composition of 

jumbo squid in the northern Humboldt Current system. For that purpose we apply several 

statistical methods and here, we used an extensive dataset of 3,618 jumbo squid non empty 

stomachs collected off Peru from 2004 to 2011. A total of 55 prey taxa was identified that we 

aggregated into eleven groups to provide new insight on the size-related and spatiotemporal 

variability of feeding habits of D. gigas. We also decipher one paradox in the jumbo squid diet: 

why do they hardly forage on the tremendous anchovy (Engraulis ringens) biomass distributed of 

coastal Peru. 

Chapter IV addresses the spatiotemporal patterns of Jack mackerel Trachurus murphyi (JM) 

and chub mackerel Scomber japonicus (CM) diet composition using a large dataset of stomach 

samples collected from 1973 to 2013 along the Peruvian coast. In total 47,535 stomachs (18,377 CM 

and 29,158 JM). were analysed, of which 23,570 (12,476 CM and 11,094 JM) were non-empty; and 

provided new insight in the variability in space and time of feeding habits and prey diversity of 

JM and CM in the northern Humboldt Current system (NHCS).  

Chapter V consists in a section of general conclusions where, on the base of the results, we 

discuss how these findings allows for an improved vision of the functioning of the NHCS and 

what are the main following steps. To do so we will use information from studies (Rosas et al., 

2011; Lorrain et al., 2011; Argüelles et al., 2012; Alegre et al., 2013, 2015) and what are the key next 

steps.  
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Chapter II 

The Northern Humboldt Current system 

In this chapter we briefly describe the most important physical and biological features of the 

NHCS. Then we describe the temporal dynamics of the NHCS and finally we propose a general 

description of each species studied, in order to contextualize and interpret the following chapters. 

2.1. Atmospheric forcing of the NHCS 

The marine climate off the west coast of South America results from the interaction of basin-

scale atmospheric systems, combined with regional and local effects caused bay the land-sea 

boundary. Of these systems, the most influential is the South-Eastern Pacific Subtropical 

Anticyclone (SEPSA), which is an area of high atmospheric pressures triggering equatorward 

winds along the coast of Chile and Peru. This forcing generates winds rotating counterclockwise 

around the South Pacific. This wind system carries the surface waters by friction, giving rise to an 

anticyclonic ocean circulation, known as the South Pacific subtropical gyre. The SEPSA is bounded 

in the north by the Inter-Tropical Convergence Zone (ITCZ) and to the south by the polar front and 

disturbances along the front. Associated with the anticyclone is a subsidence inversion at the top of 

marine boundary layer, which slopes downward from west to east, creating onshore-offshore 

gradients in wind stress and cloudiness. The intersection of the inversion and coastal mountains 

supports the alongshore poleward propagation of coastally trapped atmospheric waves (coastal 

lows). The alongshore winds are also modified by regional effects, such as the baroclinicity created 

by onshore-offshore horizontal temperature gradients across upwelling fronts, the coastline and 

mountain slopes. Local effects are added to the basin and regional scale factors by local 

topography and coastline orientation, especially those created by bays and headlands. These 

atmospheric factors affect local surface fluxes of momentum (wind stress and buoyancy 

(precipitation, freshwater runoff and surface heat flux) over the coastal ocean.   (Strub et al., 1998) 

(Figure 2.1). 
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Figure 2.1. Climatologically winds and currents during austral winter and summer. Peru Current (PC), 

Peru Coastal Current (PCC), Poleward Undercurrent (PUC), Peru-Chile Countercurrent (PCCC), Chile 

Current (CC), Chile Coastal Current (CCC), Cape Horn Current (CHC), West Wind Drift (WWD) . 

Source: Strub et al. (1998). 

At the northern boundary of the region, the ITCZ displays annual latitudinal displacements, 

moving from ~10°N with the seasonal maximum occurring in austral autumn and winter (June to 

September) to 2-5°N and in austral summer (December-March). The equatorward winds resulting 

from the land-sea temperature gradient produce coastal upwelling reinforcing the difference in 

temperature and pressure across the coastline.  

2.2. Oceanography and physicochemical properties of the NHCS 

2.2.1. Oceanic circulation 

In the NHCS, the ocean circulation is mostly wind-driven by the South Pacific subtropical 

anticyclone forcing the South Pacific gyre whose eastern flank comprises the equatorward Peru 

Oceanic Current (POC) (Chaigneau et al., 2013). The South Pacific subtropical anticyclone 

generates surface winds rotating counterclockwise around the South Pacific. The combined effect 
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of wind force and earth rotation (Coriolis force) creates a natural pump system, the Ekman 

transport, advecting coastal surface waters offshore; those are replaced close to coast by colder 

nutrient rich waters upwelled from the bottom (Bakun, 1996). 

Near the equator, the POC flows westward and feeds the South Equatorial Current (SEC) in 

the offshore surface layers (Strub et al., 1998; Kessler, 2006). The SEC is forced by the easterlies 

toward the western equatorial Pacific creating an eastward pressure gradient force that drives, in 

subsurface layers, the eastward flowing Equatorial Undercurrent (EUC) centered along the 

equator (Philander, 1973). East of the Galapagos archipelago, the EUC separates into two branches, 

one branch flowing southeastward to reach the Peruvian coast at 5°S, while the other branch 

remains trapped along the equator  (Kessler, 2006; Collins et al., 2013). Below the thermocline and 

further South, the primary and secondary Southern Subsurface Countercurrents (SSCCs) flow 

eastward and enter the NHCS along nominal latitudes of 5° S and 7° S (Stramma et al., 2010; 2011).  

Near the Peruvian coast, the dominant along shore equatorward winds and cyclonic wind-

stress curl lead to an intense upwelling characterized by cold and highly productive water and a 

current system composed of equatorward surface and mainly poleward subsurface flows (Figure 

2.2). The equatorward surface circulation is composed by the Peru Coastal Current (PCC) that is 

mainly wind-driven (Wyrtky, 1967, 1966). The subsurface poleward circulation is mainly 

composed by the Peru-Chile Undercurrent (PCUC) along the Peruvian continental shelf and slope 

and a weaker secondary poleward flow, the Peru-Chile Countercurrent (PCCC) that flows almost 

directly south along 80° to 85°W (Huyer et al., 1991; Penven et al., 2005). North of 5°S, a near-

surface coastal current flowing from Ecuador to Peru and associated with the surfacing of the 

EUC, has been suggested (Lukas, 1986; Collins et al., 2013). Close to the Ecuadorian coast, a 

northwestward oriented surface current can also take place (Allauca, 1990; Collins et al., 2013). 

Among the different currents that compose the NHCS, the PCUC is a key element advecting 

seawater property anomalies from equatorial to extra tropical regions and playing a major role in 

the functioning of the NHCS ecosystem. The PCUC that has been tracked along the continental 

shelf and upper slope from 5°S off Peru to 45°S off Chile (Silva and Neshybat, 1979), carries a 

relatively warm, salty, nutrient-rich, oxygen-poor, and weakly stratified water mass of near-

equatorial origin (Silva and Neshybat, 1979; Tsuchiya and Talley, 1998). This water mass, the 

Equatorial Subsurface Water (ESSW), flowing southward into the PCUC is the main source of the 

coastal upwelled waters in NHCS promoting an intense primary productivity (Albert et al., 2010; 

Chavez et al., 2008; Huyer et al., 1987; Toggweiler et al., 1991). 
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Figure 2.2. Sea surface properties and oceanic circulation scheme. (a) Sea-surface salinity (SSS, color 

shading) and surface circulation. (b) Sea-surface temperature (SST, color shading in ºC) and subsurface 

circulation. SST and SSS were derived from the CARS 2009 climatology (Ridgway et al., 2002). This figure 

was adapted from several authors (Czeschel et al., 2011; Kessler, 2006; Mollier-Vogel et al., 2012; Montes et 

al., 2010; Penven et al., 2005). The newly defined Ecuador-Peru Coastal Current (EPCC) and Chile-Peru 

Deep Coastal Current (CPDCC) are indicated by white arrows. Surface currents: South Equatorial Current 

(SEC); Ecuador-Peru Coastal Current (EPCC); Peru Oceanic Current (POC); Peru Coastal Current (PCC). 

Subsurface currents: Equatorial Undercurrent (EUC); primary (northern branch) Southern Subsurface 

Countercurrent (pSSCC); secondary (southern branch) Southern Subsurface Countercurrent (sSSCC); 

Peru-Chile Countercurrent (PCCC); Peru-Chile Undercurrent (PCUC); Chile-Peru Deep Coastal Current 

(CPDCC) (Source: Chaigneau et al., 2013). 

2.2.2. Water masses distribution 

Four main types of water masses are observed in the NHCS: cold coastal water (CCW), 

subtropical surface water (SSW), equatorial surface water (ESW) and tropical surface water (TSW) 

(Table 2.1). Bertrand et al. (2004b) described extra mixed water masses: CCW–SSW and CCW–

SSW–ESW. CCW are strongly influenced by coastal upwelling (Echevin et al., 2004) and are very 

productive. The oligotrophic SSW are found offshore of the CCW. TSW are situated north of the 

equator and characterized by higher temperatures and lower salinities than other water masses off 

Peru. The mesotrophic ESW are located between the CCW and the TSW. El Niño–La Niña events 

strongly impact water mass distribution. For instance, during the El Niño 1997-98, most of the 

Peruvian EEZ was covered by oceanic water mass (SSW) until mid-1998. In the north, tropical and 
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equatorial water masses were observed, mainly during the second flux of El Niño in March to May 

1998. Close to the coast, CCW or mixed waters were always present, even if limited to restricted 

areas. The radical shift from El Niño to La Niña was clearly observed, first in the southern part of 

Peru in August to September 1998 and then along the whole coast after November 1998. The 

consequences were an important offshore expansion of CCW and a backflow of oceanic water 

(Figure 2.3). Equatorial and tropical water masses were observed north of 7°S in summer 1999 

(Bertrand et al., 2004b). 

Table 2.1. Main characteristics of the water masses presents in the Humboldt Current System. Source: 

Bertrand et al. (2004b) 

 

 

 

Figure 2.3. Water masses distribution for each survey (from left to right: surveys conducted in 1997-09-10, 

1998-03-05, 1998-05-06, 1998-08-09, 1998-11-12 and 1999-02-03). CCW, cold coastal water; SEW, 

superficial equatorial waters; SSW, superficial subtropical waters; STW, superficial tropical waters (Source: 

Bertrand et al., 2004b). 

Water mass Abbreviation Temperature (°C) Season Salinity (‰) Ecological Type
[15°; 17°] winter
[15°; 19°] summer
[17°; 25°] winter
[20°; 25°] summer
[20°; 26°] winter
[21°; 26°] summer

>23° winter
>26° summer

Source: Bertrand et al. ( 2004a)

TSW

ESW

SSW

CCW

Tropical 
surface water

Equatorial 
surface water

Subtropical 
surface water

Cold coastal 
water

oligotrophic

mesotrophic

oceanic 
oligotrophic

coastal 
productive

<34.00

[34.00; 
34.80]

>35.10

[34.80; 
35.05]
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2.2.3. Nutrients supply 

Off Peru, primary production reaches values between 3 and 4 g.C.m-2.d-1 in the coastal strip of 

100 km (Calienes et al., 1985; Graco et al., 2007). Nutrient availability in front of Peru is the result of 

coastal upwelling events, which carry from shallow depths (usually 50-100 m) waters with high 

levels of nitrate and low dissolved oxygen (Zuta and Guillén, 1970). Major local upwelling centers 

have been identified in Peru at 5°S (Paita), 6ºS (Punta Aguja), 9ºS (Chimbote), 12ºS (Callao) and 

15°S (San Juan) (Rojas de Mendiola, 1981; Zuta and Guillén, 1970).  The upwelling intensity 

increases along the coast of Peru during winter and spring, being weaker in summer and autumn 

(Graco et al., 2007).  

The highest concentrations of nutrients off Peru are located near the coast. The average surface 

nutrient ranges are: 0.2 to 4.0 µM for PO42-; 0.0 to 35.0 µM for NO3-; 0.0 to 30.0 µM for SiO24+ (Zuta 

and Guillén, 1970; Calienes et al., 1985). The nitrates concentration ranges between 20.0 µM and 0.5 

µM from 0 to 50 miles (Zuta and Guillén, 1970), and to the north of 15°S nitrates and silicates 

concentrations are higher, until to 35.0 and 30.0 µM, respectively (Zuta and Guillén, 1970; 

Codispoti, 1981). Nitrates and silicates can be depleted during phytoplankton blooms while 

phosphorus is always present in excess (Graco et al., 2007). The biochemical processes with the 

oceanographic dynamic determine the temporal variability of nutrients (Zuta and Guillén, 1970; 

Guillén et al., 1977; Calienes et al., 1985).  For example silicates and nitrates have similar patterns of 

distribution and variability. The highest concentrations of silicates (25.0 µM) are observed in 

winter and spring and the lowest in summer (1.0 µM) (Calienes et al., 1985).    

The ratio between nitrates, phosphates and silicates (N/P/Si) are 11.0/1.0/9.0 in the layer of 

0-25 m within 50 nm from the coast, and 13.0/1.0/9.0 off 55 nm from the coast (Guillén et al., 1977). 

Silicates appear to be the main limiting nutrient for phytoplankton growth (Graco et al., 2007).   

In summary, the highest concentrations of nutrients are located near the coast (Calienes et al., 

1985). With respect to latitude nutrient concentrations decrease from north to south (Zuta and 

Guillén, 1970; Codispoti, 1981), and seasonal variability is associated with the intensity of 

upwelling events, i.e. maximum in winter and spring, and weaker in summer and autumn 

(Calienes et al., 1985; Graco et al., 2007). 
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2.2.4. Oxygen Minimum Zone (OMZ) 

The oceans include areas called oxygen minimum zones (OMZs) where subsurface layers are 

depleted in dissolved oxygen (DO) (Levin, 2003). OMZs are divided from the oxygenated surface 

mixed-layer by strong vertical DO gradients forming the oxycline. These OMZs contribute to 25–

75% of oceanic N2O production (Gallardo, 1977), a potent greenhouse gas, which influences the 

Earth’s heat budget and depletes stratospheric ozone (Arntz et al., 1991). The NHCS is 

characterized by the presence of one of the more intense and surface OMZ of the global ocean 

(Helly and Levin, 2004; Chavez and Messié, 2009; Paulmier and Ruiz-Pino, 2009). OMZs result 

from the sinking and decay of surface-derived high primary production and poor ventilation. In 

the NHCS, the OMZ is thickest (>600 m) off Peru between 5 and 13ºS and to about 1000 km 

offshore (Fuenzalida et al., 2009) (Figure 2.4). Indeed the coastal upwelling lifts the coastal hypoxic 

layer closer to the sea surface (Fuenzalida et al., 2009).  

 

Figure 2.4. Oxygen minimum zone (OMZ) in the south-eastern Pacific. Thickness is colour-coded according 

to the colour bar on the right-hand side of the figure; units are in m. The upper boundary of the OMZ is 

shown in black contour lines with 50 m intervals. Source: Fuenzalida et al. (2009). 



P a g e  | 12 
Trophic ecology of jumbo squid and predatory fishes in the Northern Humboldt Current System 
 

OMZs are generally the site of intense denitrification (Gutiérrez et al., 2008a) and have notable 

effects on the distribution and mortality of marine organisms (Diaz and Rosenberg, 2008; Rosa and 

Seibel, 2008). Although some species of zooplankton, mesopelagic fish and squid have adapted 

their metabolism to colonize the OMZ temporarily (diel vertical migration) or permanently, the 

oxycline, which delimits the top of the OMZ, forms an impenetrable barrier for most marine 

species intolerant to hypoxia (Ayón et al., 2008a; Bertrand et al., 2010). In the NHCS various species 

of euphausiids and of copepods of the genera Eucalanus are adapted to hypoxia and occupy the 

OMZ during the day (Antezana, 2009; Escribano et al., 2009). During the night, however, they 

migrate to the surface and become integral part of the epipelagic community (Antezana, 2009; 

Escribano et al., 2009) (Figure 2.5). In response to global warming and anthropogenic influences, 

OMZs of the World Ocean are increasing (Stramma et al., 2008). The upper limit of OMZs is 

growing and therefore, the vertical extent of the well-oxygenated surface layer contracts, 

constraining the vertical habitat of epipelagic organisms (Bertrand et al., 2010, 2011). Upwelling 

regions are particularly vulnerable given that they encompass the largest OMZs (Levin, 2003). 

 

Figure 2.5. Schematic vision of the effect of Oxygen minimum zone (OMZ) in the distribution of species 

according to day and night periods.  

2.3. The Pelagic Ecosystem 

2.3.1. Primary and secondary production 

In the NHCS, moderate and seasonally varying winds drive an offshore Ekman transport and 

an upward flux of cold, nutrient-rich waters along the coast. The presence of nutrient-rich waters 

and high insolation at this low latitude generates a year-long but fluctuating phytoplankton bloom 

which sustains a very rich ecosystem with high stocks of pelagic fish (Echevin et al., 2008).  
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In this system, the phytoplankton community is characterized by the dominance of diatoms 

within coastal upwelling areas. However, phytoplankton species composition changes during the 

primary production cycle: from small diatoms with a high reproduction rate (Skeletonema costatum, 

Chaetoceros debilis) to larger diatoms species (Thalassionema nitzchioides, Proboscia alata) (Sánchez, 

2000). While diatoms dominate phytoplankton communities within the CCW, dinoflagellates and 

nanoplankton dominate the offshore less turbulent water masses (Sánchez, 2000). Some species of 

dinoflagellates are commonly used as biological indicators of water masses (Arntz and Fahrbach, 

1996; Sánchez, 2000): Protoperidinium obtusum for CCW; Ceratium breve, Ornithocercus steinii, 

Ornithocercus thumii and Amphisolenia Thrinax for ESW; and Ceratium praelongum and Ceratium 

incisum for SSW.  

High primary production in upwelling areas fuels an elevated secondary production of 

herbivorous zooplankton. Among upwelling areas, the EBUS apparently show the greatest 

secondary production (Cushing, 1971).  

In the NHCS, the secondary production is predominantly composed by several zooplankton 

groups, in particular copepods, euphausiids and chaetognaths (Gutiérrez et al., 2005; Ayón et al., 

2008a). Santander (1981) defined three major mesozooplankton groups according to their spatial 

distribution: (i) a continental shelf group dominated by the copepods Acartia tonsa and Centropages 

brachiatus; (ii) a continental slope group composed by siphonophores, bivalves, foraminifera, and 

radiolaria; and (iii) an oceanic group composed by the copepods Mecynocera clausi, Pleuromamma 

gracilis, Scolecithrix danae, Lucicutia flavicornis, Euchaeta marina, Euchirella bella, Oithona plumifera, 

Calocalanus pavo, Temora stylifera, Temora discaudata, Nannocalanus minor, Eucalanus subtenuis, 

Acrocalanus sp., Corycaeus sp., Oithona sp., Oncaea sp., Sapphirina sp., Corycella sp. and  Copilia sp..  

The analysis of historical data (plankton net sampling) shows that higher mesozooplankton 

biovolumes are found offshore, probably due to stronger predation nearshore within the CCW 

(Ayón et al., 2008b) and an higher vertical range of habitat allowing for vertical migration. In 

addition the number of tropical species greatly decreases toward the coast (Ayón et al., 2008a).  

The macrozooplankton biomass also increase across the continental shelf, slope and toward 

the offshore area Ballón et al. (2011) . This macrozooplankton fraction is  dominated by euphausiids 

and large copepods in particular Eucalanus spp. (Ayón et al., 2008a, Escribano et al., 2009). About 

75% of macrozooplankton biomass, in particular euphausiids and Eucalanus spp. perform diel 

vertical migration and inhabit the OMZ during the day (Ayón et al., 2008a; Escribano et al., 2009; 

Ballón et al., 2011).  
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Specifically Eucalanus inermis is the most important large copepod species (Ayón et al., 2008a). 

It is considered as indicator of CCW (Ayón et al., 2008a) and  is very common in the diet of 

anchovy and sardine in the NHCS (Espinoza and Bertrand, 2008; Espinoza et al., 2009).  

Euphausiids are most likely the most abundant zooplankton group by biomass in the NHCS. 

They form very dense swarms that are able to remove most of the diatoms biomass, exerting a 

local top-down control on primary production (Antezana 2010). In addition they contribute to two 

and one third of the diet (by carbon content) of anchovy (Espinoza and Bertrand, 2008) and sardine 

(Espinoza et al., 2009), respectively. Very high concentration of euphausiids usually occurs along 

the shelf break when the deep flow is convergent and the upwelling very strong (Simard and 

Mackas, 1989; Mackas et al., 1997). The shelf break play an important role in transporting and 

retaining zooplankton (Bakun, 1996; Genin, 2004; Zhu et al., 2009). Adult euphausiids can maintain 

their position along the continental shelf break through diel vertical migration (Barange and Pillar, 

1992; Swartzman et al., 2005).  

The squat lobster Pleuroncodes monodon has also an important role in the system, either by 

competing for space and food with important pelagic fish stocks, or as a food source for top 

predators (Gutiérrez et al., 2008b). This species is mainly distributed off Chile with a demersal 

habitat, but has extended its distribution from northern Chile to Peru, and has considerably 

increased its biomass off Peru in the mid-1990s, which match with the period of colder conditions. 

Surprisingly, squat lobster  exhibits a complete pelagic life cycle in the NHCS which is attributed 

to the intense and shallow OMZ off Peru, restricting demersal habitats (Gutiérrez et al., 2008b). 

2.3.2. Pelagic fishes  

“Small pelagic fish” commonly refers to shoaling epipelagic fish characterized by high 

horizontal and vertical mobility in coastal areas and which, as adults, range usually in length from 

10 to 30 cm. The upper limit is often debated, and some authors use the term “medium-sized 

pelagic fish” to designate larger fish ranging from 20 to 60 cm. The small pelagic fish includes 

typical forage species like sardine and anchovy mainly preying on zooplankton, while the group of 

medium-sized pelagic fish includes mostly species from intermediate trophic levels like jack 

mackerel, chub mackerel and coastal tunas (e.g., bonito). When adults, the latter species prey 

mainly on macrozooplankton, ichthyoplankton, and small fish or mollusks (Fréon et al., 2005). 

These species exert a major trophic control on the dynamics of marine ecosystems, and are heavily 

exploited by industrial and artisanal fisheries (Cury et al., 2000). Small pelagics are most abundant 

in upwelling areas and contribute to food security. Exploited stocks of these species are prone to 
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large interannual and interdecadal variation of abundance as well as to collapse (Fréon et al., 2005). 

At present, small pelagic forage fish species represent the largest landings of the world fisheries 

(27.3 millions of tonnes and 29.7% of total world catches). Currently, the Peruvian anchovy  is the 

top landed species with more of 7 millions of tonnes in 2011 (FAO, 2014a).  

The NHCS sustains large populations of small pelagic fish and supports the world’s largest 

tonnage fishery for Peruvian anchovy (Bouchon et al., 2000). The NHCS also supported a major 

sardine fishery in the past (Csirke et al., 1996). However, at the end of the 1997-98 El Niño, the 

anchovy population was high while the sardine population was depleted (Bertrand et al., 2004b, 

2011; Cardenas, 2009) and currently, there is virtually no more sardine exploited in the NHCS . 

Pelagic resources off the coast of the Southeast Pacific are abundant and exhibit high variability 

over short periods of time. Their availability is directly related to the intensity and persistence of 

local upwelling processes and remote climatic forcing. Anchovy dominated the pelagic fishery 

landings in the 1960s, becoming the most important fishery in the world but landings declined 

drastically from 1972, (Ñiquen et al., 2000). The anchovy collapse has been attributed to a 

combination of overfishing, an El Niño event and the decadal shift towards less productive 

conditions (Alheit and Niquen, 2004; Bertrand et al., 2004b, 2011). The anchovy stock started giving 

signs of recovery in 1981 but was hit again by the El Niño 1982-83(Hilborn and Walters, 1992). 

Anchovy the began to recover and become highly abundant again since the 1990s (Ñiquen et al., 

2000; Gutiérrez et al., 2007; Bertrand et al., 2011). 

Among the medium-sized pelagic fish, jack mackerel is one of the most important exploited 

fish populations in the world. Its distribution covers the sub-tropical waters of the South Pacific 

Ocean, from South America up to New Zealand and even Australia (Gerlotto et al., 2012). In Peru 

records of jack mackerel landings started in 1907 (Coker, 1910) and continuous statistics are 

available since 1939. At the beginning of its exploitation, annual catches were low, but increased 

from 10 to a few hundred tonnes per year prior to 1963 (Tilic, 1963). Catches had a steep increase 

from 130,000 tonnes in 1974 to 500,000 tonnes in 1977. Biomass of jack mackerel were assessed by 

acoustics at 1.9 million of tonnes at the end of 1997, and then almost disappeared from the acoustic 

observations (Bertrand et al., 2004b) until the late 2000s. According to  Gerlotto et al. (2012), since 

the late 1990s, T. murphyi has suffered a strong decrease in total catches, which dropped to close to 

0.5 million tonnes. During the 2002-2011 period, annual reports of T. murphyi landings showed a 

clear downward trend in the Peruvian coast with a minimum in 2010. On the opposite, 260,000 

tonnes were recorded in 2011, a figure much higher than the ones obtained in 2007 and 2008 

(Ñiquen et al., 2013). 
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2.3.3. Pelagic squids 

In Peru, fishery statistics register four species of squids caught along the coast: Doryteuthis 

(Amerigo) gahi (d’Orbigny,1835), Lolliguncula (Lolliguncula) panamensis (Berry, 1911), Lolliguncula 

(Loliolopsis) diomedeae (Hoyle, 1904) and the jumbo squid Dosidicus gigas (Benites and Valdivieso, 

1986; Villegas, 2001).D. gahi, which is the one of most common and most widely distributed species 

in these waters (Villegas, 2001), is a neritic loliginid squid. It is distributed over the continental 

shelf and slope of the Eastern Pacific, from Puerto Pizarro (Peru) to southwestern Chile, and in the 

South Atlantic from the Gulf of San Matias (Argentina, about 42ºS) to Tierra del Fuego (Jereb and 

Roper, 2010). El Niño events (rise in sea temperatures) have a negative effect on D. gahi catches, 

while La Niña episodes (lower sea temperatures) have a positive effect (Villegas, 2001). L. 

panamensis commonly called "calamarete" is a coastal surface species (between 5 and 30 m depth) 

(Jereb and Roper, 2010). It is frequently caught with prawns in northern Peru (Benites and 

Valdivieso, 1986). L. diomedae called "squid dart" is a neritic species usually found in large schools 

in the Gulf of Panama. Catches of this species are usually incidental in Peru (Jereb and Roper, 

2010). 

The jumbo squid is one of the most abundant squids in the eastern Pacific Ocean (Nigmatullin 

et al., 2001; Waluda et al., 2004). D. gigas supports a major fishery in the Eastern Pacific, off the 

coasts of North and South America. This species has a semi oceanic pelagic habitat, and occurs at 

depths of up to 1200 m (Nigmatullin et al., 2001). Highly labile populations exhibit large 

fluctuations in abundance in response to environmental variability (Waluda et al., 2006). Off Peru, 

D. gigas has been targeted commercially by the artisanal fleet since 1961 (Yamashiro et al., 1998), 

mainly in the north, and by industrial fleets since 1991 (Taipe et al., 2001). In Chile, landing data of 

D. gigas are available since 1957 (Rocha and Vega, 2003) and older records of stranded individual 

exist before (Wilhelm, 1954). Catches of D. gigas were sporadic before 1970, although high 

abundances have been reported (Schmiede and Acuña, 1992). In the Gulf of California the artisanal 

fishery targeting D. gigas started in 1974 (Ehrhardt et al., 1983; Argüelles et al., 2008).  

2.4. Mesopelagics fishes 

Mesopelagic fishes are important components of oceanic ecosystems because of their common 

and abundant distribution in the world oceans (Ahlstrom, 1969; Sassa et al., 2002; McClatchie and 

Dunford, 2003; Irigoyen et al., 2014). They are main consumers of zooplankton and larval and 

juvenile fishes and are important prey for the top predators in the oceanic food web such as tunas, 



P a g e  | 17 
Trophic ecology of jumbo squid and predatory fishes in the Northern Humboldt Current System 
 
squids and dolphins (Kinzer and Schulz, 1985; Williams et al., 2001; Cornejo and Koppelmann, 

2006). 

An important feature of mesopelagic fish, such as the lanternfish (Myctophidae) and lightfish 

(Phosichthyidae), is that they perform extensive vertical migrations and form dense patches. 

Vertical migration is one of the most widespread patterns of animal behaviour in mesopelagic 

zones (Frank and Widder, 2002), and influences the life histories of non-migrating and migrating 

fish and cephalopods (mainly the jumbo squid) and the feeding behaviour and spatial distribution 

patterns of predators (Konchina, 1993, 1990; Bertrand et al., 2002b; Benoit-Bird and Au, 2003). 

The mesopelagic community of NHCS is dominated by the fish families Phosichthyidae 

(Vinciguerria lucetia), Myctophidae (especially Diogenichthys laternatus and Lampanyctus idostigma) 

and Bathylagidae (especially Leuroglossus urotranus) accounting for 60.4, 12.8 and 3.7% of the total 

abundance, respectively (Figure 2.6; Cornejo and Koppelmann, 2006).  

The biomass of V. lucetia varied from 2 to 11 million of tonnes as measured by acoustic means 

(Castillo et al., 1998; Gutiérrez and Peraltilla, 2008). Therefore, V. lucetia is a significant ecosystem 

component in the NHCS (Cornejo and Koppelmann, 2006). 

 

Figure 2.6. Mean abundance of functional groups of mesopelagic fishes collected in pelagic trawls (source: 

Cornejo and Koppelmann, 2006) 

2.5. Temporal dynamics of the NHCS 

The NHCS is subject to bottom-up forcing at seasonal, interannual, multidecadal, 

centennial scales and millennial scales (Chavez et al., 2008; Salvatecci, 2013). 
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2.5.1. Centennial and millennial variability 

Large scale variability (∼ 20 000 years) in terms of environmental conditions and fish 

abundance proxy has been recently studied using laminated sediments retrieved off Peru 

(Salvatteci, 2013; Salvatteci et al., 2011). Both components of the ecosystem presented very high 

variability at centennial and millennial scales. During the globally cold Little Ice Age period (from 

~1500 to ~1850 AD), the NHCS was little productive. Then the system shifted in ca.1820 towards 

more productive conditions (Figure 2.7) (Sifeddine et al., 2008; Gutiérrez et al., 2009). Before the 

shift, the NHCS was characterized by lower productivity, weaker OMZ and low abundances of 

fish scales. In opposite the last ~150 years were characterized by an increase in export production, 

a strong OMZ and high fluxes of anchovy scales. A rapid expansion of the subsurface nutrient rich, 

oxygen depleted waters occurred in recent years with a higher biological productivity (Valdés et al., 

2008; Gutiérrez et al., 2009; Salvatteci, 2013). Since 1900 AD, anchovy reached very high levels of 

productivity; actually the highest levels of productivity in the last 20 000 years (Salvatecci, 2013). In 

general, fish productivity modulation appears to be strongly linked to primary productivity and 

oxygen.  

 

Figure 2.7. Pelagic ecosystem proxies off Peru (Callao, a–e; Pisco, f–j). (a, f) Chaetoceros free diatom 

accumulation rates (DAR) shown as neritic, meroplanktic and oceanic groupings (106 valves cm−2 y−1); (b, 
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g) total organic carbon (TOC) flux anomalies, to permit comparisons of the variability between sites 

(standardized units); (c, h) 3-term running averages of anchovy scale deposition rates (Nr×1000 cm−2 y−1); 

(d, i) 3-term running averages of sardine scale deposition rates and offshore pelagic (jack mackerel+ chub 

mackerel) scale deposition rates (Nr×1000 cm−2 y−1); (e, j) 3-term running averages of deposition rates of 

bones and vertebrae (Nr×1000 cm−2 y−1) (Source: Gutiérrez et al., 2009). 

2.5.2. Decadal variability 

The decadal scale variability is largely attributed to physical and biological mechanisms 

(Checkley et al., 2009). These fluctuations have basin-wide effects on sea surface temperature (SST) 

and thermocline slope. During the cool eastern boundary regime, the basin-scale sea level slope is 

accentuated (lower in the eastern Pacific, higher in the western Pacific). A lower sea level is 

associated with a shallower thermocline and increased nutrient supply and productivity in the 

eastern Pacific; the inverse occurs in the western Pacific. In addition changes affect the transport of 

boundary currents, equatorial currents, and the major atmospheric pressure systems (Chavez et al., 

2003). 

The interdecadal variability is characterized by periods of high and low abundance of small 

pelagics, termed ‘‘pseudo-cycles”, because of their irregular periodicity (Fréon et al., 2008). 

Historical data on catches and conventional stock abundance estimates showed that several fish 

populations, and especially small pelagic fishes inhabiting upwelling ecosystems, undergo large 

interdecadal variations in abundance with amplitudes equal, if not larger than, the interannual 

variability (Bakun, 1996; Spencer and Collie, 1997). According to Chavez et al. (2003) the sardine 

and anchovy fluctuations are associated with large-scale changes in ocean temperatures: for 25 

years, the Pacific is warmer than average (the warm, sardine regime) and then switches to cooler 

than average for the next 25 years (the cool, anchovy regime). During warm period, the 

thermocline is deeper, the upwelling is weaker and productivity is lower. So the range of habitat 

favorable to anchovy is dramatically reduced while habitat favorable to sardine increases and 

spreads towards the continental shelf (Bertrand et al., 2004b). However, this alternation in the 

abundance of anchovy and sardine has only been observed in the fishing records, covering less 

than a complete cycle. When looking at longer records, such as paleo-fish scales from sediments, 

this alternation seems to occur only occasionally (Gutiérrez et al., 2009; Valdés et al., 2008). 
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2.5.3. Interannual variability  

The principal cause of interannual variability in the NHCS is related to the El Niño and La 

Niña events (ENSO) that produce positive sea-surface temperature anomalies (SSTA) in the 

equatorial and eastern Pacific (Chavez et al., 2011). The ENSO is due to a periodic instability of the 

ocean-atmosphere dynamics in the Pacific Ocean. During El Niño the equatorial Walker circulation 

is weakened, and the coast of Peru is characterized by an increase in SSTA, the sub-surface 

oxygenation increased and reduced productivity due to a deepening of the thermocline (Barber 

and Chavez, 2008). During El Niño events, the thermocline/nutricline is located deeper than 

during normal conditions, and there is much less fertilization of the upper section of the water 

column. In opposite, the La Niña events are characterized by lower SSTA in the eastern central 

equatorial Pacific (Figure 2.8). 

 

Figure 2.8. Schematic of upper ocean and atmospheric circulation  during El Niño (left) and La Niña 

extremes (right). Source: NOAA/NCEP/CPC 

It is well known that “no two El Niño events are quite alike” (Takahashi et al., 2011), yet the 

typical evolution of such an event was thought to consist in an initial warming off South America 

and later in the central equatorial Pacific during austral summer (Rasmusson and Carpenter, 1982). 

This belief changed with the extraordinary 1982–83 and 1997–98 El Niño events, which had large 

amplitudes and different evolutions (Takahashi et al., 2011; Dewitte et al., 2012), particularly as the 

maximum anomalies occurred simultaneously in the eastern and central equatorial Pacific during 

austral summer.  

The ENSO has been categorized into two types of El Niño (Kug et al., 2009; Yeh et al., 2009; 

Dewitte et al., 2012): the traditional Cold Tongue El Niño or Eastern Pacific El Niño that consists of 

the SST anomaly developing and peaking in the eastern equatorial Pacific and the so-called 

Modoki El Niño (Ashok et al., 2007) or Central Pacific El Niño (Kao and Yu, 2009; Dewitte et al., 
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2012). However, Takahashi et al. (2011) propose three types of El Niño: the central Pacific El Niño, 

the “canonical” El Niño and the extraordinary events. In particular, present evidence that suggests 

that these are all part of the same non-linear phenomenon rather than independent modes of 

variability.  

La Niña and El Niño events shape the spatial organization of living organisms by modifying 

the volume of their favorable habitat. Under El Niño, the extent of cold and nutrient rich waters 

(CCW) is reduced and sea surface temperature increases to the coast. In these conditions, 

anchovies concentrate closer to the coast if remaining CCW refuge area exist as for instance during 

the El Niño 1997-98 (Bertrand et al., 2004b). However, Bakun and Weeks (2008) suggested that El 

Niño events could contribute to maintain the high fish production of the system by favoring fast 

growing fish species like anchovy, which take advantage of the low predation and rapidly increase 

their population and dominate the system. 

2.5.4. Fine scale variability  

A characteristic of pelagic ecosystems is that their ‘substrate’ consists of constantly moving 

water masses, where ocean surface turbulence creates ephemeral oases. Physical forcing results 

from a myriad of turbulent processes that span a wide range of scales and influence organism 

distribution and behaviour in a variety of ways. At the fine scale (~1–10m vertically), the 

importance of thin layers has recently been emphasized owing to their ubiquitous nature and their 

potential to induce ecological hotspots and increase trophic transfer rates from phytoplankton to 

higher trophic levels. At broader (horizontal) scales, strong evidence suggests that internal wave 

(IW; ~100m to 10–15 km), submesoscale (~1–20 km; for example, fronts and filaments) and 

mesoscale (~20–100 km; for example, eddies) activity modulates the concentration and distribution 

of marine organisms, thereby influencing ecosystem dynamics (Bertrand et al., 2014). A recent 

study demostrated that the upper ocean dynamics at scales less than 10 km play the foremost role 

in shaping the seascape from zooplankton to seabirds in the NHCS. Both physical forcing and 

organism behaviour are implicit in the maintenance to the aggregate of living organism in patches, 

with the latter increasing in importance with each step up the trophic chain. Since predators are 

required to locate their prey, their foraging behaviour tends to reflect the patchy distribution of 

their prey (Bertrand et al., 2014). 

 

 



P a g e  | 22 
Trophic ecology of jumbo squid and predatory fishes in the Northern Humboldt Current System 
 

2.6. Description of the studied species  

In this study we focused our investigations on three species, being major in human 

consumption in Peru: the Jumbo squid, the Jack mackerel and the Chub mackerel. The first species 

is a nektonic cephalopod; the following species are pelagic teleosts.  

2.6.1. Jumbo squid Dosidicus gigas 

The jumbo squid belongs to the family Ommastrephidae and the subfamily Ommastrephinae 

(Nesis, 1985), which is the most phylogenetically advanced subfamily of Ommastrephidae (Zuev et 

al., 1975; Nigmatullin, 1979; Nesis, 1979, 1985). D. gigas is the largest ommastrephid squid, its 

dorsal mantle length (ML) is up to 1000-1200 mm and it weight up to 30-50 kg. The jumbo squid 

has a body (mantle) torpedo-shaped, cone-shaped on the back, with end flaps, cartilage siphon 

inverted T-shaped, with eight arms and two tentacles around the mouth, two rows of suckers on 

the arms and tentacles in four rows; the fourth pair of arms of males are modified for coupling 

(Figure 2.9).  

Taxonomy 

Phylum: Mollusca 

Class: Cephalopoda 

Order: Teuthida 

Family: Ommastrephidae 

Genus and species: Dosidicus gigas 

Common names: Humboldt squid, jumbo flying squid, jumbo squid, jibia, pota. 
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Figure 2.9. Jumbo squid Dosidicus gigas. A, dorsal view of a large specimen (50-80 cm ML) (Roper et al., 

1984) B, ventral view of a specimen of 25.4 cm ML (Source: Wormuth, 1976). 

Distribution  

The jumbo squid is endemic to the Eastern Pacific Ocean (Nesis, 1983; Nigmatullin et al., 2001) 

and is well known for occasional excursions into new areas that can be brief or quite long lasting 

(Gilly, 2005). D. gigas invaded Monterey Bay, CA for much of the 1930’s (Croker, 1937) and then 

seemed to disappear until the 1997-98 El Niño. Since that time, it has become a commonly resident 

in that area (Zeidberg and Robison, 2007). Similarly, over the last eight years D. gigas has displayed 

a major range expansion in the waters from central California throughout the Pacific Northwest as 

far as north Alaska (Cosgrove, 2005; Wing, 2006; Bazzino et al., 2010). In the equatorial area the 

range of westward distribution reaches 140˚W. The horizontal distribution of D. gigas are found 

from 400 to 600 nm offshore (Figure 2.10).   

General habitat 

The jumbo squid is one of the most abundant nektonic squids in the epipelagic zone of the 

world ocean. The boundaries of its range pass along the Eastern peripheries of the large-scale 

oceanic gyres of the central water masses and are approximately coincident with the isoline of the 

average phosphate concentration 0.8 mg-at P-PO43-/m2 in the 0-100 m layer. This isoline indicates 

the boundary of highly productive water. Its upper temperature limits range from 15º to 28ºC in 

surface waters, and even 30-32ºC in equatorial areas, while its lower temperature limits are not less 
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than 4.0-4.5ºC in the deeper water. During the day, squid stay within or just below the layer of the 

deep OMZ (Nigmatullin et al., 2001). Adult squids undergo diel vertical migrations with a night lift 

to the 0-200 m water layer, plunging in the daytime to 800-1000 m and deeper (Yatsu et al., 1999).  

The feeding occurs both at night and during the day in the OMZ below 300 m (Jereb and Roper, 

2010). 

 

Figure 2.10. Distribution map of D. gigas. Green - Common historical distribution. Sky blue - 2001 

expansion. Blue – 2006 expansion. Green, Sky blue and Blue is the total present distribution. (Source: 

http://www.asnailsodyssey.com/LEARNABOUT/OCTOPUS/octoEgg.php) 

Reproductive characteristics 

D. gigas is dioecious (separate sexes, Mangold, 1987) and exhibits external sexual dimorphism: 

the mantle of the males is harder and thicker compared with the one of females (Nesis, 1970). 

However, this dimorphism is inconspicuous (Ochoa-Báez, 1982; Michel et al., 1986). Reproduction 

is mainly located between 25˚N and 20-25˚S, mostly not further than 50-150 nm from the shore. D. 

gigas is semelparous, i.e. females spawn once then die (Markaida, 2001; Tafur et al., 2001, 2010; Keyl 

et al., 2010; Liu et al., 2010;). There is a distinct peak in spawning during spring and summer in the 

southern hemisphere (Nigmatullin et al., 2001; Taipe et al., 2001), and a secondary peak from July to 

August (Tafur and Rabí, 1997; Tafur et al., 2001). 
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Feeding characteristic 

D. gigas plays an important role in oceanic food webs, as prey and predator. Juveniles are 

preyed upon by large carnivorous fish, small tuna, squid and gulls. Sub-adults are preyed upon by 

dolphin fish, snake mackerel, yellowfin tuna, other large tunas and fur seals. Adults are preyed by 

sharks, swordfish, striped marlin, sperm whales and pilot whales (Nigmatullin et al., 2001). Sperm 

whale stomach contents from the southeast Pacific showed that D. gigas was the main prey (Clarke 

et al., 1988). Studies in the Gulf of California reported that jumbo squids fed predominantly on 

mesopelagic fishes such as myctophids. Pteropods, micronektonic squid, megalopae and 

euphausiids were also recovered in stomachs of jumbo squid (Markaida, 2006). The diet of D. gigas 

in the Southeast Pacific appears similar to the one found in the Gulf of California. Myctophids 

dominated and the Phosichthyidae Vinciguerria lucetia contributed significantly too 

(Shchetinnikov, 1989). The trophic role of cephalopods has been investigated mainly using 

stomach content analyses. However, cephalopod trophodynamic studies based on such methods 

are hampered because the ingested prey are often rapidly digested, rejected and more usually 

eaten in parts, making species identification difficult (Rodhouse and Nigmatullin, 1996; Cherel and 

Hobson, 2005). Stable isotope analysis (SIA) has emerged as a complementary tool in trophic 

ecology and has proven useful in squid feeding ecology (Cherel and Hobson, 2005). Results for the 

jumbo squid in Peru suggest very high variability in stable isotope values by latitude and by size 

(Argüelles et al., 2012; Lorrain et al., 2011). The latitudinal trend suggests that D. gigas is a relatively 

resident species at the scale of its isotopic turnover rate (i.e. a few weeks). The increasing trend of 

δ13C values with mantle length and the strong relation between δ13C values and distance to shelf 

break suggest that D. gigas migrate from oceanic to coastal waters, changing its foraging areas 

between juvenile and adults,although no significant diet shift was reported. There is no systematic 

increase in trophic position with size and latitude off Peru. Caution must then be taken when 

comparing individuals of different sizes in different environments (Argüelles et al., 2012). 

2.6.2. Jack mackerel Trachurus murphyi 

Jack mackerels can grow up to 70 cm of fork length (FL).  They have elongated and slightly 

compressed bodies. The head is large with well-developed transparent protective membranes 

covering the eyes. The mouth is large, with the rear edge of the lower jaw aligning with the front 

edge of the eyes. It possesses small teeth. The second dorsal fin is much longer than the first. The 

pectoral fin is long and pointed. The origin of the pelvic fin is below the bottom point of 

attachment of the pectorals. The anal fin is long, but shorter than the second dorsal fin. At its front 
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are two strong spines. The upper parts of the body are metallic blue in color, while the bottom 

surfaces are a silvery white, on curved part lateral line with scales enlarged and scute-like 

(Kawahara et al., 1988) (Figure 2.11). 

 

 

 

Figure 2.11. Jack mackerel Trachurus murphyi (36 to 65 cm LT; Chirichigno and Cornejo, 2001). 

Taxonomy 

Phylum: Chordata 

Class: Osteichthyes/Actinopterygii 

Order: Perciformes 

Family: Carangidae 

Genus and species: Trachurus murphyi (Nichols, 1920) 

Scientific synonyms: Historically Trachurus symmetricus murphyi 

Common names: Chilean Jack mackerel (FAO, Chile, Russia), Murphy’s mackerel (New 

Zealand), Pacific Jack mackerel (Russia), Peruvian Jack mackerel (Australia, Russia), Jack mackerel, 

horse mackerel, jurel (Chile, Peru, Ecuador). 

Distribution  

The Jack mackerel is distributed throughout the south eastern Pacific, both inside EEZs and on 

the high sea, ranging from the Galapagos Islands and south of Ecuador in the north to southern 

Chile, and ranging from the South America in the east to Australia and New Zealand in the west 

(Evseenko, 1987; Serra, 1991; Elizarov et al., 1993; Kotenev et al., 2006) (Figure 2.12). Serra (1991) 

summarized depths for aggregations of T. murphyi and Guzman et al. (1983) used hydroacoustic 
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equipment to record the species down to 250 m off the coast of northern Chile. In central and 

southern Chilean waters, Bahamonde (1978) recorded Jack mackerels down to 300 m, and Japanese 

trawlers have caught it at depths of 300 m beyond the Chilean EEZ (Anon, 1985, 1984). Córdova 

(1998) described a diurnal migratory behaviour, with fish being found deeper during the day than 

at night.  

 

Figure 2.12. Extension and abundance of the jack mackerel, during periods of low (red area) to high 

abundance (yellow area). The letters in rectangles show the major patches of density. A: Central Pacific-

Centre South Chilean stock; B: Northern Chilean stock; C: Peruvian stock; D1 and D2: Central South and 

Southwest Pacific Ocean stocks respectively (Source: Gerlotto et al., 2012). 

General habitat  

T. murphyi is a schooling pelagic species adapted to both neritic and oceanic environments. 

Jack mackerels are observed in temperate waters of high productivity, nutrient-rich waters and are 

associated with oceanic fronts formed by the Subtropical Surface Water (SSW) and the Cold 

Coastal Waters (ACF) in Peru (Dioses, 2013; Ñiquen and Peña, 2008). Also, Jack mackerel 

occupying waters with a broader range of SST (17–28 ºC) and salinity (32–35.6). Jack mackerel 

mainly distributed in warm and oxygenated water without a marked preference for one water 

mass, but with a ubiquitous distribution inside oceanic water masses (Bertrand et al., 2004b). 

However, after El Niño 1997-98 the cold coastal waters extended far from the coast and had been 

associated with a reduction in T. murphyi abundance (Gutiérrez et al., 2008a).  
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In Chile the coast is in the eastern boundary current system with several upwelling centers 

that are subject to a complex variety of physical influences (Sobarzo et al., 2001). The main source 

of upwelling waters in the Humboldt Current System is Subsurface Equatorial Waters (AESS, 

Agua Ecuatorial Subsuperficial) associated with the Peru–Chile Undercurrent. Others studies 

(Daneri et al., 2000) have reported high levels of primary and secondary production in the inshore 

environment along the coast of central–southern Chile. Offshore (outside the Chilean EEZ) a 

higher biological production zone has also been reported as a result of small and meso-scale 

oceanic eddies, meanders and oceanic upwelling (Grechina, 1998). All life history stages of T. 

murphyi were reported from within these zones, which were considered to be areas of high 

biological productivity (Chernyshkov et al., 2008). 

Reproductive characteristics 

T. murphyi spawns in austral spring and summer throughout its whole distribution range, 

with the main spawning season from October to December (Perea et al., 2013). Santander and 

Flores (1983) and Dioses et al. (1989) described Jack mackerel spawning in Peru as mainly 

occurring between 14º00’S and 18º30’S. However, more recent analyses by Ayón and Correa (2013) 

show that between 1966 and 2010, Jack mackerel larvae were present every year along the whole 

Peruvian coast, with clear year to year north-south shifts in the centers of higher larvae abundance 

associated with shifts in environmental conditions. The annual mean larvae densities for the 

positive stations in the period 1966-2010 estimated by Ayón and Correa (2013) ranged from 3 to 

1131 larvae.m-2, with a median of 21 larvae.m-2. While the frequency and abundance of larvae was 

variable, no particular trend was highlighted during the 56 years of observations. The length at 

first maturity of T. murphyi in Peru was first estimated to be 25 cm fork length (FL) by Abramov 

and Kotlyar (1980) and 23 cm total length (21 cm FL) by Dioses et al. (1989). Recently, Perea et al. 

(2013) analyzed data from 1967 to 2012 and estimated a total length at first maturity of 26.5 cm, 

with no significant changes over the observed period.  

Feeding characteristic 

In the Eastern Pacific T. murphyi is considered as an opportunistic predator feeding on large 

forms of meso and macrozzoplanckton, including some fish species characterized by short life 

histories (Konchina et al., 1996). In Chile, main prey in terms of relative importance were 

euphausiids (Antezana 2010). Other important prey were mesopelagic fish Vinciguerria sp. 

(Medina and Arancibia, 1989, 1992, 2002). In Peru Jack mackerel prey upon zooplankton, 

mesopelagic fish (Konchina, 1990; Konchina et al., 1996) and pelagic fish such as anchovy (Sánchez 
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de Benites et al., 1985; Sánchez de Benites and Muck, 1987). Among zooplankton, euphausiids was 

the main prey again (Alamo et al., 1996; Alamo and Espinoza, 1998). Larvae in their first stages of 

development feed on zooplankton, as cladocerans, nauplii, copepodites, barnacle larvae, 

euphausiids larvae, decapods larvae and isopods larvae (Ermolovich and Gardina, 1994). In Chile 

Jack mackerels of 26 to 40 cm fork length (FL) fed mostly on salps and jack mackerel from 41 to 50 

cm FL fed mainly on euphausiids (Miranda et al. 1998). 

2.6.3. Chub mackerel Scomber japonicus 

Chub mackerel is a pelagic species with a hydrodynamic and fusiform elongate body (Figure 

2.13). Growth of the species is characterised as very fast in the first two years, manifested in a high 

growth rate (k). Fishes can reach 50% of the asymptotic length in this period, considering that L∞ 

are reported in the literature to be approximately 45 cm and longevity between 9 to 10 years. Entire 

body is covered with rather small scales. The distance between the two dorsal fins equals the 

length of the base of the first. Its coloration on the back is green-bottle and is decorated with many 

thick, wavy lines and vertical forming whimsical drawings. Each lobe of the tail at its base is a dark 

round spot (Castro Hernández and Santana Ortega, 2000; Collette and Nauen, 1983).  

 

Figure 2.13. Chub mackerel Scomber japonicas (18 to 32 cm LH; Chirichigno and Cornejo, 2001) 

Taxonomy 

Phylum: Chordata 

Class: Actinopterygii 

Order: Perciformes 

Family: Scombridae 

Genus and species: Scomber japonicus, Houttuyn, 1782 
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Scientific synonyms: Scomber colias, Scomber australasicus (Note that Scomber australasicus 

Cuvier 1832 is a valid species in its own right, but appears to have an Australasian only 

distribution. S. australasicus has been used erroneously in the past as a synonym for S. japonicus in 

the eastern Pacific). 

Common names: Chub mackerel, caballa, cavalinha, estornino, mackerel, blue mackerel. 

Distribution 

The distribution of S. japonicus is reported as cosmopolitan (Figure 2.14). In the Atlantic Ocean 

it occurs off the east coast of North America from New Scotia, Canada to Venezuela. On the South 

American east coast, it occurs from southeast Brazil to south Argentina. Matsui (1967) describes 

the distribution of S. japonicus in South Pacific to be from Panama to Chile, including Galapagos 

Islands, with austral limits at Guamblin Island at 45°4’S. The longitudinal distribution includes 

areas outside EEZ limits in the south (off Chile), but it occurs mainly within 100 nm of the coast in 

the north. On the European coast S. japonicus is reported from the United Kingdom to France. S. 

japonicus is reported from almost the whole coast of Africa. It occurs in the Mediterranean and Red 

Seas. It is apparently absent in the Indian Ocean, from Indonesia and Australia (Collette and 

Nauen, 1983).  

General habitat 

S. japonicus is a pelagic fish with gregarious behavior. In Chilean waters it can form mixed 

schools with Jack mackerel and sardine  at the adult stages, but also with anchovy when smaller 

than 15 cm (Collette and Nauen, 1983). It is uncommon for S. japonicus to inhabit waters deeper 

than 50 m and according to Maridueña and Menz (1986), the species undertakes vertical migration 

to surface for feeding. However, Hernández (1991) observed the presence of S. japonicus over the 

continental slope around the Canaries Islands, from the surface to 300 m depth. 
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Figure 2.14. Distribution of Chub mackerel in the world (Source: FAO) 

Reproductive characteristics 

S. japonicus is a heterosexual fish with no external sexual dimorphism. Histological studies 

demonstrate S. japonicus as a partial spawner, with an extended period of reproductive activity. 

Off Peru the spawning season is described to be from August to March, mainly in high summer 

(January). Near Ecuador a secondary period occurs in September (Serra et al., 1982; Maridueña and 

Menz, 1986). In Chilean waters the spawning season is identified from November to March in 

northern and southern areas. This has been confirmed with results from projects monitoring 

pelagic fisheries in these regions, which report an increase of mature fishes at the end of the year, 

and high values of gonadosomatic index (GIS) within January and March (Martinez et al., 2006). 

The length of 50% maturity was estimated in the north region at 26 cm (Pardo and Oliva, 1992). 

Feeding characteristic 

Juveniles of Chub mackerel are zooplankton feeders and consume mainly euphausiids, 

copepods and mysids (Angelescu, 1980; Castro Hernández, 1991; Castro Hernández and Santana 

Ortega, 2000).  Chub mackerel adults feed on a very wide range of organisms including 

invertebrates and fishes, thus demonstrating considerable feeding plasticity (Konchina, 1990).. The 

invertebrates found in the mackerel stomachs were siphonophore mollusks (bivalves and 

cephalopods), polychaetes, crustaceans (ostracods, copepods, mysids, amphipods, euphausiids, 

decapods), chaetognaths and tunicates (salps). Fishes were mainly juveniles and adults of the 

families Myctophidae and Engraulidae and eggs of teleost (Mendo, 1984; Konchina, 1982, 1990, 

1993; Medina and Arancibia, 1992; Castro, 1993; Castro and Hernández-García, 1993; Alamo et al., 

1996). 
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Chapter III 

Comprehensive model of jumbo squid Dosidicus gigas 

trophic ecology in the Northern Humboldt Current System. 

3.1. Introduction 

The ommastrephid jumbo squid Dosidicus gigas is the most abundant nektonic squid in the 

surface waters of the world ocean (Nesis, 1970; Nigmatullin et al., 2001) and supports the largest 

cephalopod fishery. This squid, endemic to the Eastern Tropical Pacific, is mainly distributed in 

the oceanic domain (Roper et al., 1984) over a wide bathymetric range (Zeidberg and Robison, 

2007). D. gigas is a large squid with high fecundity (Nigmatullin et al., 2001), a rapid growth rate 

and a short life span (up to ~32 months Arguelles et al., 2001; Keyl et al., 2010). The tolerance of this 

species to a wide range of environmental factors (temperature and oxygen) facilitates its 

geographic expansion (Jereb and Roper, 2010; Gilly et al., 2012), such as the recent invasion into 

California waters (Rodhouse and Nigmatullin, 1996; Zeidberg and Robison, 2007). 

D. gigas plays an important role in marine food webs both as predator and prey (Budelmann, 

1994). This abundant and voracious squid forages on a large variety of prey using prehensile arms 

and tentacles coupled with an efficient sensory system (Boyle and Rodhouse, 2005; Yatsu et al., 

1999). The impact on exploited marine resources can be strong (Zeidberg and Robison, 2007) and 

the broad trophic niche of jumbo squid is enhanced further by physiological abilities. This squid 

can undertake extensive vertical migrations, up to 1200 m, foraging on deep, mid-water and 

surface organisms (Gilly et al., 2006; Jereb and Roper, 2010; Markaida et al., 2005; Nigmatullin et al., 

2001). In addition, its presence within anoxic or hypoxic waters was validated by tagging 

experiments in the Californian Current System (Gilly et al., 2006, 2012). Indeed, the eastern tropical 

Pacific is characterised by the presence of an oxygen minimum zone (OMZ) (Helly and Levin, 

2004) and D. gigas is a part-time resident of the OMZ thanks to adapted behavior and specific 

metabolic characteristics (Trübenbach et al., 2013, 2012). Jumbo squid vertical migrations impact 

the vertical energy flow, providing an efficient energy transport from the surface to deeper waters 

(Gilly et al., 2006; Jereb and Roper, 2010).  
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Previous studies showed that the feeding ecology of jumbo squid is highly variable in time 

and space (Markaida and Sosa-Nishizaki, 2003; Ibáñez et al., 2008) The feeding ecology of jumbo 

squid was investigated in the eastern Pacific from stomach content (Chong et al., 2005; Rosas-Luis, 

2007; Field et al., 2007, 2013) and stable isotopes (Ruiz-Cooley et al., 2006, 2010; Lorrain et al., 2011; 

Argüelles et al., 2012). By investigating stable isotope signatures along gladius, (Lorrain et al., 2011) 

showed that jumbo squids living in the same environment at a given time can have different 

historical backgrounds. These differences in life history strategies, illustrating a high plasticity. 

Here, we used an extensive dataset of more than 4000 stomachs sampled between 2004 and 2011 in 

the northern Humboldt Current to provide new insight on the size-related and spatiotemporal 

variability of feeding habits of D. gigas. We also decipher one paradox in the jumbo squid diet: 

why do they hardly forage on the tremendous anchovy (Engraulis ringens) biomass distributed of 

coastal Peru? We show that the shallow OMZ present off coastal Peru could hamper the co-

occurrence of jumbo squids and anchovies, impacting jumbo squid foraging behaviour. We finally 

propose a conceptual model on jumbo squid trophic ecology including the ontogenetic cycle, 

oxygen and prey availability. 

3.2. Material and methods 

3.2.1. Sample collection 

A total of 5320 stomachs were collected from jumbo squids caught between 2004 and 2011 by 

the authorized industrial jigging fishery off Peru (3ºS - 17ºS - from the coastal area to 605 km from 

the coast) (Figure 3.1). No animals (squids i.e. invertebrates) were killed specifically for this 

research. Samples were collected by technicians of the Peruvian Sea Institute (IMARPE) aboard 

fishing vessels according to standard protocols. In each fishing set, 20 individuals were randomly 

sampled, covering the captured size range. On board or in the laboratory, the length (mantle 

length ML, in cm) and the total weight (in g) were measured and the sex and maturity stages (I: 

immature; II: in maturing; III: mature; and IV: spawning) were determined according to (Nesis, 

1970, 1983) and validated by Sánchez (2011). Each fishing set was characterized according to the 

distance to the shelf break (negative to the continental shelf and positive towards offshore, in km), 

the season (austral summer, fall, winter and spring) and the diel periods. Sea surface temperature 

anomalies (SSTA, in ºC) were used as a proxy of environmental conditions. 
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Figure 3.1. Location (black dots) of the sampling points of jumbo squids collected from the industrial jig fleet 

between 2004 and 2011 

3.2.2. Stomach content analysis 

All stomach contents were washed through a sieve mesh of 500 μm in order to retain prey 

remains and diagnostic hard parts (fish otoliths, cephalopod beaks, crustacean exoskeleton). 

Stomach contents were weighed and the different items constituting a single taxon were sorted, 

counted and weighed. Jigging vessels use 2 kW lights (no use of bait) to attract jumbo squids. 

Biases can be associated with fishing gear and tactic but jigging is recommended for diet studies 

(Ibáñez et al., 2008) Jigging avoids overestimating the occurrence of target commercial species in 

the stomach contents of jumbo squids that can feed after capture. Light is a powerful stimulus that 

attracts individuals independently of their satiety. In addition jumbo squids are known to be 

extremely voracious and thus can continue to feed once their stomachs are full. However, this 

fishing tactic and the squid voracity artificially increase the proportion of cannibalized jumbo 

squids in the stomach contents (Cubillos et al., 2004; Markaida, 2006). To remove this unnatural 

feeding, the easily identifiable fresh jumbo squid portions were systematically eliminated from the 

stomach contents. Even after this procedure, jumbo squid was still by far the dominant prey by 



P a g e  | 35 
Trophic ecology of jumbo squid and predatory fishes in the Northern Humboldt Current System 
 
wet weight and reached 75%, indicating that fishery-induced cannibalism was not fully eliminated. 

This high rate was mainly due to 859 stomachs containing D. gigas only. We were therefore not 

able to precisely estimate the importance of natural cannibalism with our dataset that was still 

blurred by artificially induced cannibalized JS. We thus removed these 859 stomachs and worked 

with the remaining 4461 (83.9%), from which 3618 were not empty (68% of the total number of 

stomachs) (Table 3.1). We probably eliminated some samples that were not affected by the fishing 

tactic but this protocol clearly allowed us to improve the relevance of the results. 

Identifiable fresh remains and diagnostic hard parts were used to determine the number of 

each prey item. For fish otoliths and cephalopod beaks, the maximum number of left or right 

otoliths and the greatest number of either upper or lower beaks were used to estimate the number 

of fish and cephalopods, respectively. Prey items were identified to the most precise possible 

taxonomic level using keys and descriptions for fish (Fitch and Brownell, 1968; García-Godos 

Naveda, 2001), crustaceans (Newel, 1963; Méndez, 1981) cephalopods (Wolff, 1984), and other 

molluscs (Alamo and Valdivieso, 1997). The degree of digestion of the stomach contents can 

preclude the identification of all prey remains. However, fresh remains made up the largest 

percentage of our stomach content samples. The meticulous analyses of the stomach contents 

performed in our laboratory allowed us to divide into broad prey classes (Cephalopods n/i, 

Teleosteii n/i, Crustacea n/i) the unidentified remains (see Appendix Table A3.1). A total of 55 

prey taxa were identified at different taxonomic levels (see Tables A3.1 and A3.2). Prey were 

quantified by frequency of occurrence, numbers and wet weight. Mean percentages by number 

(%N) and by weight (%W) were computed by averaging the percentages of each prey taxon found 

in the individual stomachs. We thus treated individual squid as the sampling unit, allowing us to 

compute standard deviations (Chipps and Garvey, 2007). As the identification level was not 

homogeneous during the 2004-2011 period, we aggregated prey in 11 groups based on their 

consistency and their ecological importance in the Humboldt Current system (Table A3.1). 

A stomach fullness weight index (FWI, in %) was calculated (Rasero et al., 1996): 

=
× 100
−

 

where Wst is the wet weight of the stomach content (g) and W the body wet weight of the 

individual (g). 
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3.2.3. Data analyses 

A clear relationship exists between squid size and maturity stages (Figure A3.1) indicating 

that size is, to a certain extent, a proxy for ontogenetic processes. To avoid using correlated 

covariates we only used the size to study life cycle effect on jumbo squid diet. Jumbo squid diet 

did not significantly vary with sex (results not shown). This factor was thus not taken into account 

in further analyses. Jumbo squid were generally captured by jigging after dusk and therefore night 

samples (62%) dominated the dataset. Preliminary analyses were performed on night data and on 

the whole data set. Results were similar and we therefore only report results with the complete set 

of data. 

In order to analyse the potential effects of explanatory variables on the number of taxa per 

stomach, a proportional-odds model for ordinal response (McCullagh and Nelder, 1989) was fitted 

to the vector of prey richness, i.e. the number of different taxa recovered in each stomach (yi)i≥1 that 

was assumed to be a realization of a random variable Y. Y takes its values in the set E = {1, 2, ..., S} 

with S equals the maximum observed richness in the 3618 non empty stomachs. The model was 

written in terms of the cumulative probability function of Y, conditional on three continuous 

exogenous covariates (size, stomach fullness index and distance to the shelf break). The logistic 

form was chosen to predict the probabilities of observing different prey richness as a function of 

the covariates of interest.  

The potential effects of explanatory variables (mantle length, season, distance to the shelf 

break, SSTA) on stomach fullness index and diet of jumbo squid were first investigated using 

Kruskal-Wallis (KW) non-parametric tests. This preliminary approach allowed us to process an 

initial inspection of the dataset. Length, distance to the shelf break and SSTA were then each 

divided in four ordered categories, according to their ecological interpretation (the number of 

stomachs is given for each category); for mantle length: less than 40 cm (559), 41-60 cm (1553), 61-

80 cm (934), over 80 cm (572); for distance to the shelf: less than 50 km (840), 51-75 km (682), 76-130 

km (829), over 130 km (1267); for SSTA: less than -1.5°C (616), -1.49 to -0.5°C (899), -0.49 to 0.5°C 

(1299), over 0.5°C (804). The numbers for the 4 seasons were: summer (690 stomachs), fall (1068), 

winter (997) and spring (863). However these approaches did not account for dependence and 

interactions between explanatory variables, and then did not elucidate the complex relationships 

between the type of prey and the environmental niches. In addition the sampling scheme is very 

unbalanced in space and time. To cope with these issues, we applied the classification and 

regression tree (CART) approach proposed by (Breiman et al., 1984) and adapted to diet data by 
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(Kuhnert et al., 2011). Classification tree was used here as a tool to identify the relationships 

between explanatory variables and the distribution of prey groupings. This non-parametric 

method gives a clear picture of the structure of the data, and allows an intuitive interpretation of 

the interactions between variables. The classification tree uses a partitioning algorithm to estimate 

a series of binary decision rules that divide the data into smaller homogeneous subgroups in an 

optimal way. The whole dataset is represented by a single node at the top of the tree. Then the tree 

is built by repeatedly splitting the data. Each split is defined by a simple rule based on a single 

explanatory variable. Splits are chosen to maximize the homogeneity of the resulting two nodes. 

We followed the approach of (Kuhnert et al., 2011) and transformed the diet data as follows: each 

row represents a unique predator-prey combination, where the proportion by wet weight of one of 

the eleven prey taxa potentially present in the stomach of a predator is used as a case weight for 

the classification tree. As the splitting procedure grows an overlarge tree, we applied a prune back 

procedure to keep the tree reasonably small to focus on the first most informative splits. Each 

terminal node (or leaf) of the final tree is characterized by a predicted prey distribution 

(percentage by weight of 11 groups), given three explanatory continuous variables (stomach 

fullness index, distance to the shelf break and SSTA) and two categorical variables (season: 

summer, fall, winter and spring; and individual size (cm) divided into four ordered categories). 

Year effect was also tested but this factor had no significant effect on the pruned tree and was 

removed from the final model (Table A3.2 for detailed data per year). 

Analyses were conducted using the statistical open source R software (R Core Team 2013), 

with the MASS package for the proportional odds-model (Venables and Ripley, 2002) and the rpart 

package for the classification tree. 

3.3. Results 

3.3.1. Overall diet description 

The size of the 4461 selected squids after excluding fishery-induced cannibalism ranged from 

14.3 to 114.2 cm ML (Table 3.1). Overall, 19% of the stomachs were empty. For the 3618 non-empty 

ones, stomach fullness weight index (see Figure A3.2 for details on FWI distribution) decreased 

significantly with size (Figure 3.2A; KW, H = 499.6, df = 3, P <0.01) and increased significantly 

with distance to the shelf (Figure 3.2C; KW, H = 177.8, df = 3, P < 0.01). On the opposite, effect of 

SSTA was not significant (Figure 3.2D; KW, H = 8.5, df = 3, P >0.05), but slightly higher values of 

stomach fullness weight index occurred in spring (Figure 3.2B; KW, H = 93.8, df = 3, P <0.01). 
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Table 3.1. Overall description of sampled jumbo squid stomachs during 2004-2011 

 

Cephalopoda (Dosidicus gigas and Other Cephalopoda) were the dominant food source in %O, %N 

and %W (Table 3.2). Both taxa were observed in 13.2 and 44% of the stomachs, respectively, and 

contributed together 40% by weight and 30% by number. The Phosichthyidae Vinciguerria lucetia 

occurred frequently in the stomach contents (36%), representing an average percentage of nearly 

20% by weight and 25% by numbers. The three Myctophidae taxa (Myctophum spp., Lampanyctus 

sp. and other Myctophidae) occurred in 1577 samples (8.4, 13.6 and 21.7% respectively), and 

contributed 15% by weight and 18.3% by number. Teleosteii were frequent in the stomachs (21.7%) 

and represented 12.7% by weight and 11.7% by number. 

 

Figure 3.2. Distribution of the logarithm of the Fullness Weight Index (log(FWI) according to the individual 

size (A), the season (B), the distance to the shelf-break (C), and the Sea Surface Temperature Anomaly 

(SSTA) (D). 
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The diet composition of jumbo squid in weight varied according to size (Figure 3.3A). The 

main pattern was the steady increase of the percentage of cephalopods with size: D. gigas and 

other Cephalopoda accounted for 24.3% of the diet of small squids (ML<40 cm) and reached 43.2% 

for large squids with ML>80 cm. The percentage of Euphausiidae also increased significantly 

(Table A3) with size, except for the smallest squids: 6% for the size class under 40 cm, 3.5% in 

individuals between 40 and 60 cm, 8.4% in individuals between 60 and 80 cm, and 12.4% in 

individuals larger than 80 cm. On the opposite, the importance of V. lucetia (21.0% to 5.6%) and 

Myctophum sp. (7.2% to 1.3%) decreased significantly while jumbo squid increased in size (Table 

A3.3). 

No clear tendency appeared with the season (Figure 3.3B), except a significantly higher 

percentage of V. lucetia (32%) in spring and less Cephalopoda (26%), Euphausiidae (2.8%) and 

Teleosteii (9.3%) (Table A3.3). In summer, Euphausiidae were at their maximum (10%) while the 

percentage of V. lucetia was low (13.7%) and Engraulidae were very rare (0.4%). 

Table 3.2. Distribution of the eleven dietary groups recovered from jumbo squid stomach contents off Peru 

between 2004 and 2011. 

 

The diet composition of D. gigas varied significantly with the distance to the shelf break 

(Figure 3.3C; Table A3.3): Euphausiidae slightly decreased, Cephalopoda decreased from 36.3% 

inside the 50 km to 26.8% out of the 130 km, while percentages of V. lucetia increased from 13.8% 

inside the 50 km to 24.2% out of the 130 km. The percentage of Engraulidae also increased with the 

distance to the shelf break except for distances greater than 130 km. 
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Diet changed according to SSTA (Figure 3.3D). Trend from negative towards positive 

anomaly was associated to a significant increase in V. lucetia (from ~15 to 28.6%) and a significant 

decrease in cannibalism (from ~11 to 6.6%) (Table A3.3). 

3.3.2. Prey taxa richness 

Based on the detailed 55 prey taxa, the prey richness in the stomachs was very low. A 

maximum of seven prey taxa was observed in one stomach only, while a single prey taxon was 

recovered in 48.0% of the stomachs and 30.7% had two prey taxa (mean=1.87, sd=1.10). Results 

were similar with the eleven aggregated taxa: a maximum of seven prey taxa, 48.6% with one prey 

taxon and 31.1% with two prey taxa (mean=1.82, sd=1.02). Consequently, analyses were performed 

with the 11 taxa aggregated database (Table 3.2.). 

 

Figure 3.3. Jumbo squid diet composition in weight (%) according to the individual size (A), the season (B), 

the distance to the shelfbreak (C), and the Sea Surface Temperature Anomaly (SSTA) (D). 

According to AIC, the proportional-odds model with two covariates (fullness and distance to the 

shelf, AIC=8691) was the most parsimonious (adding squid size did not improve the fit, 

AIC=8692). The estimated values of the parameters were used to compute the probabilities of 

observing 1, 2, or 3+ (i.e., at least 3) prey taxa in a stomach as a function of stomach fullness or 

distance to the shelf. Increasing the stomach fullness led to a sharp increase in the probability of 
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recovering 3+ prey taxa in a stomach and to a marked decrease of the probability to observe only 

one taxon (Figure 3.4A). After a short plateau, the probability for two taxa roughly decreased with 

stomach fullness too. On the other hand, the probability to find one taxon only decreased with the 

distance to the shelf, while the probabilities to recover more than two prey taxa increased with this 

covariate (Figure 3.4B). 

 

Figure 3.4. Proportional odds model. Prediction of the number of prey groups (1, 2, 3 or more) in a given 

stomach according to the fullness weight index (FWI) (A) and the distance to the shelf-break (B). Black tick 

marks under the x-axes show the location of the data points. 

3.3.3. Multivariate approach 

The pruned classification tree showed 13 nodes (Figure 3.5). The first split separated four nodes 

corresponding to a very low fullness (<0.2) from the others. Among this group, the nodes 1 to 3 

predicted diet compositions dominated by cephalopods (predicted cephalopod probability = 0.48, 

0.35 and 0.34, respectively), which occurred more likely in individuals larger than 80 cm ML (node 

1), in individuals smaller than 80 cm ML caught in summer and fall (node 2), and in individuals 

located within the 191 km from the shelf break caught during winter and spring (node 3). The 

node 4 however showed a high incidence of V. lucetia (predicted probability = 0.44) at a distance to 

the shelf break higher than 191 km, in winter and spring. The node 5 showed a high probability of 

cannibalism (predicted probability = 0.32) for medium size (between 60 and 80 cm ML) individuals 

with stomach fullness higher than 0.2. From the node 6 on, squids had a smaller ML (less than 60 

cm). The node 6 also showed a high probability of cannibalism (predicted probability = 0.46) for 

SSTA <0.425ºC, in individuals with fullness greater than 2.08, located at less than 209 km to the 



P a g e  | 42 
Trophic ecology of jumbo squid and predatory fishes in the Northern Humboldt Current System 
 
shelf break. The node 7, characterised by the Teleostei (predicted probability = 0.60), had the same 

characteristics than the node 6, except a more offshore location. Nodes 8 to 10 showed a relatively 

balanced diet and were separated from nodes 6 and 7 by a lower fullness (<2.08). Nodes 11 to 13 

corresponded to fullness ≥0.2, size <60 cm and SSTA ≥0.425ºC. Node 11 was associated to high 

SSTA (≥1.09ºC), short distance to the shelf break (<197 km), and predicted a dominance of 

cephalopods (predicted probability = 0.37). In nodes 12 (distance to the shelf break greater than 197 

km) and 13 (SSTA < 1.09ºC), V. lucetia was largely dominant (predicted probability = 0.38 and 0.55, 

respectively). 

 

Figure 3.5. Classification tree of jumbo squid diet (prey groups) according to the Fullness Weight Index 

(FWI), the Distance to the Shelf (in km) (DS), the Sea Surface Temperature Anomaly (SSTA, in 6C), the 

mantle length (Size in cm) and the Season. For each final node, the predicted probabilities of occurrence of 

the 11 prey groups is detailed (histograms) and the number of prey occurrences (occ) is given. See Table for 

prey codes. 

3.4. Discussion 

This work is based on an extensive dataset on jumbo squid diet encompassing a large range 

of spatiotemporal location and sizes. Beyond the usual description of organism diet, our results 

allowed us to provide new knowledge on jumbo squid trophic ecology, in particular on prey 
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distribution under different environmental conditions and on the role that could be played by the 

dissolved oxygen. 

3.4.1. Prey richness 

Using the detailed (55 taxa) or aggregated (11 taxa) databases, prey richness in stomachs was 

similar with an average of 1.8 taxa per stomach. This unexpected result has several consequences. 

It first empirically validates the eleven aggregated taxonomic groups (Table A3.1). Second, it 

shows that when jumbo squid foraged on one prey among the 55 taxa, it did not feed on extra prey 

belonging to the same group of 11 aggregated taxa. A spatial segregation of prey of jumbo squids 

may explain this observation. If a taxon from one group of the 11 aggregated taxa occurred in a 

location where jumbo squids seek their prey, the probability of the presence of an extra taxon 

belonging to the same group was low. On the contrary, jumbo squid could select the most 

abundant or energetic taxon of a group, neglecting the other available prey belonging to the same 

group. Our data did not allow us to support either one of these hypotheses. However, predictions 

of the multinomial model showed that stomach fullness increased with the number of prey taxa, 

while most of the stomachs contained one or two prey taxa only. We could have expected an 

opposite pattern. Indeed, other top predators such as tuna exhibit high foraging efficiency (high 

fullness) in presence of large and dense monospecific prey aggregations in surface layers (Bard et 

al., 2002; Bertrand et al., 2002a; Potier et al., 2008). Once a prey concentration of one target species is 

detected, tunas can feed on this concentration until satiation (Menard and Marchal, 2003). On the 

contrary, when prey are scarce and dispersed in the environment (Auster et al., 1992), tunas forage 

on a higher diversity of prey but with a lesser efficiency (Potier et al., 2007). On the case of the 

jumbo squid our results therefore question the usual hypothesis according to which marine top 

predators may seek locally dense aggregations of monospecific prey. 

3.4.2. Dietary composition, environmental conditions and size-

related patterns 

Identifying cephalopods food is tricky (Budelmann, 1994): the beak can bite off small pieces 

of tissue of large prey; diagnostic hard parts of prey, such as fish otoliths, skeletons, crustacean 

integuments or cephalopod beaks are often rejected. Selective rejection can also occur and blur diet 

composition. In addition, digestion is known to be rapid among cephalopods. However, we 

carefully dealt with the intrinsic biases linked to the data sampling and with the identification of 

prey items that was carried out by the same scientific team following a constant protocol. 
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Consequently, the extensive set of data over a large time period allowed us to elucidate the 

foraging behaviour of jumbo squids in the northern Humboldt Current system. We assume that 

changes in prey composition according to squid size and spatiotemporal features were more 

related to prey accessibility rather than to specific/size-related preferences. Jumbo squid perform 

ontogenetic migration with small individuals distributed further offshore than larger individuals 

(Arguelles et al., 2001). Spawning in less productive offshore waters is used by other species to 

avoid predation on first stages (e.g. the South Pacific jack mackerel, Trachurus murphyi; (Barbieri et 

al., 2004). This spatial dynamics is evidenced once more here, with small individuals distributed 

further offshore than the large ones. However, the biggest ones (> 80 cm ML) seem to move back 

offshore, probably to spawn (Tafur et al., 2001) but not as far as the smallest individuals that are 

advected further offshore at early stages. Note that warmer waters (offshore in our case) are 

suitable for spawning (Field et al., 2013). Prey composition in the stomach contents matches this 

pattern. Euphausiids contributed at a higher level as prey of large rather than of small squids, 

according to the known spatial distribution of euphausiids. Ballón et al. (2011) showed indeed that 

the biomass of euphausiids was maximal off the shelf-break until a distance of ca. 150 km. This 

range corresponds to that where the larger individuals spawn (Tafur et al., 2001). Therefore, 

contrary to most past studies (Rahm, 1937; Nesis, 1983, 1970; Markaida and Sosa-Nishizaki, 2003; 

Markaida, 2006) zooplankton contribution does not systematically decrease with the size. In 

addition, isotope signatures along jumbo squid gladius in the northern Humboldt Current system 

showed that large individuals can significantly forage on low trophic levels (Lorrain et al., 2011). 

Mesopelagic fish (V. lucetia and myctophiids) recovered in the jumbo squids stomachs 

confirmed the structuring role of spatial matching in the jumbo squid-prey interactions. This prey 

group contributed more during spring and far from the coast, when jumbo squid was more 

offshore. In addition, small jumbo squids distributed far from the coast consumed more 

mesopelagic fish than larger individuals located closer to the coast. This pattern was unexpected 

again, but is in accordance with the distribution pattern of mesopelagic fish that are distributed 

more offshore than euphausiids (Cornejo and Koppelmann, 2006).  

 Cannibalism accounted for more than 8% in weight. High levels of cannibalism are 

frequently observed in jumbo squid (Markaida and Sosa-Nishizaki, 2003; Ibáñez et al., 2008). Yet, 

cannibalism can be overestimated depending of the fishing gear used for capture (Ibáñez et al., 

2008; Ibáñez and Keyl, 2009). In this study we followed various steps to remove as far as possible 

artificially induced cannibalism. On the other hand, cannibalism may also be underestimated. 

Indeed, squid muscles sections with a high degree of digestion are difficult to determine. When it 
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was not possible to identify the squid prey species, the corresponding items were incorporated in 

the group of other cephalopods. It is thus likely that some digested D. gigas were considered as 

'other cephalopoda'. 

Several hypotheses are proposed to explain cannibalism in squid. This behavior may be part of an 

energy storage strategy of the population, allowing cephalopod to react to favorable and adverse 

environmental conditions by increasing or reducing their number (Ibáñez and Keyl, 2009). 

Cannibalism can also provide a competitive advantage among young and adults and can be 

beneficial for survival during periods of food shortage (Caddy, 1983). We observed the classic 

pattern of steady increase of cannibalism with size related to the increase in predator’s ability to 

capture and handle the prey (Christensen, 1996; Lundvall et al., 1999). Large specimens can access 

to highly energetic food when feeding on conspecifics (Amaratunga, 1983). However, the relative 

spatial segregation of this species by size (Arguelles et al., 2001) may be a response to limit 

cannibalism on juveniles. 

3.4.3. The anchovy paradox: does oxygen matter? 

In the California Current system D. gigas forages substantially on coastal fish, particularly 

anchovy (Engraulis mordax) (Markaida et al., 2008; Field et al., 2013). Surprisingly D. gigas consumes 

very few anchovy in Peru, whereas a tremendous biomass of anchovy is potentially available. 

Furthermore, off Peru, anchovy is concentrated in schools or dense aggregations within the thin 

surface oxygenated layer (Bertrand et al., 2008; Bertrand et al., 2010), which makes anchovy an easy 

prey for mobile predators (Gerlotto et al., 2006). Unlike in California (Field et al., 2013), the jumbo 

squid distribution hardly overlaps with that of anchovy, which is very coastal (Figure 3.6). Why 

does jumbo squid not distribute closer to the coast and benefits from the huge anchovy stock? 

Oxygen may be the answer. Anchovy is not adapted to anoxia and cannot enter the oxygen 

minimum zone. However this small fish (oxygen supply per body size decreases as fish 

size/weight increases) can forage at low cost (so low oxygen demand) on macrozooplankton and 

is thus adapted to inhabit the unsaturated surface coastal waters (Bertrand et al., 2011). On the 

contrary, jumbo squid is adapted to anoxia since it undertakes diel vertical migration and occupies 

the oxygen minimum zone (OMZ) during the day (Gilly et al., 2006, 2012; Rosa and Seibel, 2008, 

2010; Bazzino et al., 2010; Trübenbach et al., 2012; Seibel, 2013). D. gigas succeeds in the OMZ by 

managing hypoxia via metabolic suppression (Rosa and Seibel, 2008, 2010; Trübenbach et al., 2012, 

2013), coupled with a high-affinity respiratory protein, the hemocyanin (Seibel, 2013). However 

normoxic conditions are needed in surface during the night to supply the oxygen demand that was 



P a g e  | 46 
Trophic ecology of jumbo squid and predatory fishes in the Northern Humboldt Current System 
 
not achieved in hypoxic waters at greater depths (Seibel, 2011, 2013). In coastal Peru the OMZ is 

much more intense than in California, the upper OMZ is shallower and, above the oxycline, 

oxygen concentration and saturation are low (Rosa and Seibel, 2008). In such conditions jumbo 

squid may be prevented to enter the coastal waters where the anchovy is situated, as was 

previously evidenced for sardine (Bertrand et al., 2011). Indeed, off Peru, the abundance of jumbo 

squid biomass increases with oxygen saturation (Figure 3.6). When upwelling is strong, anchovy 

partly distributes off the shelf break and should be more accessible to jumbo squid. However, such 

conditions correspond also to an extension of the surface oxygen unsaturated waters (Bertrand et 

al., 2011).  

 

Figure 3.6. Conceptual model and cross-shore profiles of oxygen and organisms distribution. The lower panel 

shows the mean (spline smooth) cross-shore profiles of dissolved oxygen saturation in % (grey dashed line), 

depth of the 2 ml.l-1 isoline in m (black solid line) and the acoustic-estimated biomass of anchovy (blue solid 

line) and the jumbo squid acoustic-estimated biomass (red solid line). Oxygen and anchovy data come from 

Bertrand et al. (2011); jumbo squid data come from IMARPE, unpublished data. Note that the oxygen data 

cover the range 7ºS to 18ºS. The upper part shows the cross-shore distribution of jumbo squid along its 

ontogenetic cycle. The colours in the arrow represent the schematic range of distribution and proportional 

abundance of the three main prey groups i.e., the other cephalopoda, euphausiids and mesopelagic fish. 
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3.5. Synthesis 

As a synthesis we propose a comprehensive model of jumbo squid Dosidicus gigas trophic 

ecology in the northern Humboldt Current system (Figure 3.6). Small jumbo squid (<400 mm) are 

mostly distributed far offshore where they largely forage on mesopelagic fish. As they grow, they 

move closer to the coast and increase their consumption of other cephalopoda. However, off Peru, 

contrarily to other systems (Field et al., 2013), D. gigas does not occupy very coastal waters where a 

dramatic biomass of anchovy is present. We hypothesize that jumbo squid cannot enter the coastal 

waters that present low surface oxygen saturation. Although jumbo squid can forage in hypoxic 

deep waters it needs surface normoxic waters afterwards (Seibel, 2013). Oxygen concentration may 

thus limit the co-occurrence of both species and then preclude predator-prey interactions. Large 

squids move further offshore (without reaching the oceanic distribution of smaller jumbo squids), 

and increase their consumption of squids (including jumbo squid) and euphausiids. Note that 

euphausiids consumption is rather low considering its availability, indicating that, when possible 

D. gigas, appears to seek for more energetic prey. The global pattern we described illustrates the 

opportunistic foraging behaviour of jumbo squid, which is impacted by ontogenetic migration and 

most likely by oxygen conditions. Also, even if the global scheme described in Figure 6 seems 

consistent, as was already described (Argüelles et al., 2012a; Lorrain et al., 2011), high variability 

exists between individuals and the differences in jumbo squid life history strategies highlight the 

high degree of plasticity of the jumbo squid and its high potential to adapt to environmental 

changes. 
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Chapter IV 

Diet diversity of jack and chub mackerels and ecosystem 

changes in the Northern Humboldt Current System: a long-

term study 

4.1. Introduction 

The diet of predatory fishes integrates many ecological components including feeding behaviour, 

habitat use over time and space, diversity and availability of forage fauna, energy intake and fish 

condition, inter- and intraspecific interactions, and environmental forcing. Food habits are 

therefore critical for understanding trophic functioning of marine ecosystems and then 

sustainability of exploited fish populations. In the Humboldt Current system, Trachurus murphyi 

(Jack mackerel, JM hereafter) and Scomber japonicus (Chub mackerel, CM hereafter) are important 

pelagic resources with high content of essential fatty acids (Celik, 2008). They are heavily exploited 

by artisanal and industrial fisheries (Arcos et al., 2001; Gerlotto et al., 2012).  

JM occurs from the equator to the austral region of Chile and from the coast of South America to 

New Zealand and Tasmania (Grechina 1998; Gerlotto et al., 2012). The JM fishery has been one of 

the largest worldwide, with a maximum yearly yield of almost 5 million tonnes in 1995. Since the 

late 1990s, JM landings dropped off to reach ca. 0.5 million tonnes (Figure 4.1). This trend is 

attributed to both overfishing and climate variability (Gerlotto et al. 2012). Depicting the relative 

importance of natural and anthropogenic forcing is complex, making difficult the management of 

this highly migratory and transzonal resource, which is distributed in several EEZ and in 

international waters. JM has therefore become a concern for the South Pacific Region Fisheries 

Management Organization (SPRFMO: www.southpacificrfmo.org).  
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Figure 4.1. Evolution of catches for the same 4 fleets (in million tonnes) for T. murphyi and S. japonicus 

during the period 1970-2012. The 4 main fleets are Ecuador, Peru, Chile and USSR-Russia. Below: (Source: 

FAO, 2014a). 

CM is an important commercial coastal-pelagic species with a worldwide distribution (Collette 

and Nauen, 1983; Castro Hernández and Santana Ortega, 2000). In the Southeastern Pacific CM 

distribution extends from the Ecuador to Darwin Bay in Chile (45°S) (Castro Hernández and 

Santana Ortega, 2000; Konchina, 1982). In this region CM catches showed rises and falls during the 

last 40 years but a clear declining trend occurred after a maximum of ca. 0.7 million tonnes in 2003. 

Variation in distribution and abundance of both species is related to a variety of abiotic (e.g. 

Ganoza, 1998; Arcos et al., 2001; Bertrand et al., 2006) and biotic factors (e.g. Quiñones et al., 1997; 

Grechina, 1998; Bertrand et al., 2006, 2004a). Both species exploit a large range of oceanographic 

conditions (Bertrand et al., 2004b) and are considered opportunistic predators (Konchina, 1981; 

Konchina, 1982). Their distribution and abundance depends on a large extend on food availability 

(Konchina, 1981, Quiñones et al., 1997; Bertrand et al., 2006, 2004a). Investigating the dietary 
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changes of JM and CM should allow us to better understand on the one hand their respective 

trophic niches, and on the other hand their resilience to climatic changes including El Niño 

Southern Oscillation (ENSO) events and decadal changes that strongly impact marine resources 

and affect the structure of the Humboldt Current system. 

 In this paper, we analyzed an extensive dataset of more than 47,000 stomachs sampled over 

40 years (1973-2013) and provided new insight in the variability in space and time of feeding habits 

and prey diversity of JM and CM in the northern Humboldt Current system (NHCS). We show 

that (i) both species are opportunistic and present a trophic overlap but surprisingly, JM does not 

seem more voracious than CM; (ii) fish diet presented high spatiotemporal variability, the shelf 

break being a main biogeographical frontier; (iii) fish diet composition is not necessarily a good 

indicator of changes in prey biomass since prey accessibility and energy content does matter; (iv) 

unexpectedly, El Niño events have a weak effect on stomach fullness and the diet of CM and JM; 

and (v) our results challenge the paradigm of positive correlation between diversity and 

temperature in the NHCS. 

4.2. Material and methods 

4.2.1. Sample collection 

JM and CM were collected between 1973 and 2013 along the Peruvian coast up to 470 km from the 

coast (Figure 4.2), from scientific cruises carried out by the Peruvian Sea Institute (IMARPE), the 

industrial fishing fleet, and the Eureka program (quick synoptic surveys to collect biological and 

qualitative acoustic information aboard fishing vessels, see Gutiérrez et al., 2012). As far as 

possible, three individuals of both species were randomly sampled by fishing set and by size 

classes of one centimetre covering the captured size range. In the laboratory, fork length (in cm; 

hereafter, fish size refers to fork length), total weight (in g) were measured and the sex and 

maturity stages (using the five-stage scale of Sánchez et al., 2013) were determined. Stomachs were 

fixed in 96% alcohol or in 10% formaldehyde. Samples were characterized according to year, 

season, latitude, zone (north 3°-6°S, centre-north 6°S-10°S, centre-south 10°-15°S, south 15°-18°S), 

distance to the shelf break (in km, negative to the continental shelf and positive towards offshore), 

sea surface temperature anomalies (SSTA, in ºC) and depth of isotherm 15°C (Z15ºC, in m; see Flores 

et al., 2013). In addition, fish length and distance to the shelf break were classified in ordered 

categories: less than 20 cm, then by 10 cm bins above, for length; -100 to -10 km (i.e. continental 

shelf), -10 to 10 km (around shelf break), 10 to 40 km, 40 to 80 km and >80 km, for distance to the 

shelf break. 
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Figure 4.2. Distribution of stomach samples (black dots) of (A) Trachurus murphyi and (B) Scomber 

japonicus. The black solid line indicates the 200 m isobath used as a proxy for shelf break position. 

4.2.2. Stomach content analysis  

Stomachs contents were washed through a sieve mesh of 300 μm in order to retain prey remains 

and diagnostic hard parts (fish otoliths, cephalopod beaks, crustacean exoskeleton). The different 

items constituting a single taxon were sorted, counted and weighed to the nearest 0.01 g. Prey 

were determined using a binocular microscope to the lowest possible taxon using keys and 

descriptions for Teleosteii ( Fitch and Brownell, 1968; Chirichigno and Cornejo, 2001; García-Godos 

Naveda, 2001), crustaceans (Newel, 1963; Méndez, 1981), zooplankton (Trégouboff and Rosse, 

1957), cephalopods (Wolff, 1984) and molluscs (Alamo and Valdivieso, 1997). A total of 90 and 102 

prey taxa were identified for JM and CM, respectively. However the identification level varied 

over the 1973-2013 period. In particular crustanceans and especially Zoea larvae were identified 

very precisely in 2009 because a specific investigation was performed on that taxonomic group 

during this year. We therefore homogenized the prey taxa during the sampling period, and 

obtained a total of 60 and 62 prey taxa mixing different taxonomic levels for JM and CM, 

respectively (Table 4.1). In addition and for the sake of clarity of our quantitative assessments, we 

aggregated the prey taxa in 13 groups based on their consistency and their ecological importance 

in the NHCS (Table 4.2): tunicata, cephalopoda, copepoda, Zoea larvae, Euphausiidae, the squat 
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lobster Pleuroncodes monodon, other crustacea, Engraulidae, mesopelagic fishes, coastal fishes, other 

teleostei, eggs and larvae of teleostei, and other prey. Prey taxa were quantified by frequency of 

occurrence and by wet weight. Mean percentages by wet weight (%W) were computed by 

averaging the proportions of each prey taxa found in the individual stomachs (Chipps and Garvey, 

2007). We thus treated individual as the sampling unit, allowing us to compute standard 

deviations. 

A stomach fullness weight index (FWI, in %) was calculated as: 

=
× 100
−

 

where Wst is the wet weight of the stomach content (in g) and W the body wet weight of the 

individual (in g). 

4.2.3. Index of condition 

Variation in the condition of the two fish species was investigated using the relative condition 

factor Kn (Le Cren, 1951) computed for each weighed (We, observed eviscerated weight) and 

measured (FL, length in cm) individual:  

Kn = We / We’, 

where We’ is the predicted weight of an individual of a given length FL (We’=10α.FLβ). 

The following parameters were estimated for CM: α = -2.233 ± 0.0098, β= 3.243 ± 0.0067 and for JM: 

α = -1.786 ± 0.0046, β = 2.906 ± 0.0031. 
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Table 4.1. Overall description of the prey taxa observed in jack mackerel (T. murphyi) and chub (S. 
japonicus) mackerel stomach sampled off Peru during 1973–2013. Are indicated, the taxonomic information, 
the dietary group, the mean value (±standard deviation) of the proportion by weight (%W), and the 
frequency of occurrence (%O). 

T. murphyi  S. japonicus  
Phylum Class Order Family Species Dietary group %W %O %W %O 
Algae    Algae n/i Other 0.08 (2.8) 0.08 0.0001 (0.01) 0.01 
Rhizaria Radiolaria   Radiolaria n/i Other 0.00 0.00 0.00003 (0.002) 0.003 
Cnidaria    Cnidaria n/i Other 0.02 (1.4) 0.03 0.04 (2.00) 0.04 
Chaetognatha     Chaetognatha n/i Other 0.00 0.00 0.0001 (0.01) 0.002 
Annelida Polychaeta    Polychaeta n/i Other 0.05 (1.8) 0.05 0.21 (3.58) 0.29 
  Phyllodocida Alciopidae  Alciopidae n/i Other 0.03 (1.6) 0.03 0.01 (0.36) 0.12 
Mollusca    Mollusca n/i Other 0.00 0.00 0.00003 (0.003) 0.01 
 Gastropoda   Gastropoda n/i Other 0.11 (3.1) 0.21 0.10 (2.60) 0.25 
  Thecosomata  Thecosomata n/i Other 0.17 (4.2) 0.18 0.08 (2.82) 0.09 
   Cavoliniidae Diacria spp. Other 0.30 (5.4) 0.28 0.06 (2.41) 0.06 
  Littorinimorpha Atlantidae Atlanta spp.  Other 0.00 0.00 0.02 ( 1.27) 0.02 
   Naticidae Natica spp.  Other 0.09 (2.7) 0.15 0.23 ( 4.21) 0.62 
 Bivalvia   Bivalvia n/i Other 0.01 (0.6) 0.02 0.03 (1.44) 0.07 
  Veneroida Semelidae Semele spp. Other 0.10 (3.1) 0.06 0.00 0.00 
 Cephalopoda   Cephalopoda n/i Cephalopoda 0.29 (5.2) 0.27 1.76 (12.83) 1.77 
    Cephalopoda paralarvae Cephalopoda 0.00 0.00 0.03 (1.55) 0.03 
  Myopsida Loliginidae Loliginidae n/i Cephalopoda 0.15 (3.6) 0.14 0.16 (3.83) 0.15 
  Octopoda Argonautidae Argonauta spp. Cephalopoda 0.00 0.00 0.08 (2.84) 0.08 
  Oegopsida  Oegopsida n/i Cephalopoda 0.00 0.00 0.04 (1.71) 0.02 
   Enoploteuthidae Abraliopsis affinis  Cephalopoda 0.09 (3.0) 0.09 0.13 (3.37) 0.14 
   Ommastrephidae  Dosidicus gigas  Cephalopoda 0.03 (1.5) 0.03 0.15 (3.35) 0.13 
   Pyroteuthidae Pterygioteuthis giardi Cephalopoda 0.02 (1.3) 0.02 0.00 0.00 
Arthropoda    Crustacea n/i Other Crustacea 0.32 (5.4) 0.29 0.16 (3.57) 0.14 
    Crustacea eggs Other Crustacea 0.06 (2.5) 0.06 0.02 (0.83) 0.04 
    Crustacea larvae  Other Crustacea 0.00 0.00 0.11 (2.40) 0.1 
 Maxillopoda   Cirripedia n/i Other Crustacea 0.02 (1.4) 0.03 0.00 0.00 
    Copepoda n/i Copepoda 7.10 (25.1) 7.26 14.29 (31.98) 15.44 
 Ostracoda   Ostracoda n/i Other Crustacea 0.07 (2.1) 0.09 0.20 (4.12) 0.12 
  Podocopida Cyprididae Cypris larvae  Other Crustacea 0.0002 (0.02) 0.01 0.02 (0.94) 0.07 
 Malacostraca Amphipoda  Amphipoda n/i Other Crustacea 0.29 (5.2) 0.33 0.57 (6.39) 0.86 
   Gammaridae  Gammaridae n/i Other Crustacea 0.05 (2.1) 0.07 0.05 (1.80) 0.1 
   Hyperiidae  Hyperiidae n/i Other Crustacea 0.02 (1.4) 0.04 0.25 (3.42) 0.77 
   Caprellidae  Caprellidae n/i Other Crustacea 0.05 (2.2) 0.05 0.001 (0.09) 0.03 
  Decapoda   Decapoda n/i Other Crustacea 0.78 (8.6) 0.78 0.50 (6.40) 0.54 
    Decapoda eggs Other Crustacea 0.00 0.00 0.01 (0.88) 0.004 
    Zoea larvae Zoea larvae 12.29 (32.4) 12.49 13.35 (31.87) 13.05 
    Megalopa larvae Other Crustacea 1.09 (9.9) 1.12 1.58 (11.32) 1.54 
   Hippidae Emerita analoga  Other Crustacea 0.14 (3.4) 0.17 0.23 (4.65) 0.13 
   Munididae Pleuroncodes monodon  P. monodon 7.66 (26.3) 7.6 5.39 ( 1.99) 5.24 
  Euphausiacea Euphausiidae  Euphausiidae n/i Euphausiidae 49.31 (49.3) 49.08 27.45 (42.68) 26.51 
  Stomatopoda   Stomatopoda n/i Other Crustacea 0.21 (4.4) 0.26 0.28 (4.86) 0.31 
   Squillidae Squilla spp. Other Crustacea 0.04 (1.9) 0.04 0.04 (1.59) 0.06 
Echinodermata     Echinodermata n/i Other 0.00 0.00 0.003 (0.24) 0.01 
Chordata    Tunicata n/i Tunicata 0.09 (3.0) 0.09 0.30 (5.16) 0.34 
 Thaliacea   Thaliacea n/i Tunicata 0.00 0.00 3.46 (17.52) 2.99 
 Actinopterygii   Teleostei n/i Other Teleostei  6.88 (24.9) 6.87 12.55 (32.25) 11.99 
    Teleostei eggs Eggs larvae Teleostei 1.06 (9.9) 0.94 0.96 (8.98) 1.2 
    Teleostei larvae Eggs larvae Teleostei 0.60 (7.3) 0.63 2.69 (15.32) 2.66 
   Atherinopsidae Odontesthes regia Coastal fishes 0.40 (6.2) 0.4 0.39 (6.18) 0.36 
  Aulopiformes Paralepididae Paralepididae n/i Mesopelagics 0.00 0.00 0.02 (1.12) 0.02 
  Clupeiformes Clupeidae Sardinops sagax Other Teleostei  0.03 (1.5) 0.03 0.03 (1.63) 0.03 
   Engraulidae Engraulidae n/i Engraulidae 0.39 (6.1) 0.36 2.39 (15.05) 2.3 
    Anchoa spp. Engraulidae 0.14 (3.7) 0.14 0.25 (4.92) 0.25 
    Engraulis ringens  Engraulidae 4.44 (20.4) 4.33 5.99 (23.50) 5.76 
  Gadiformes Bregmacerotidae Bregmaceros spp. Other Teleostei  0.02 (1.3) 0.02 0.00 0.00 
   Merlucciidae Merluccius gayi peruanus Other Teleostei  0.83 (9.0) 0.84 0.00 0.00 
  Myctophiformes Myctophidae Myctophidae n/i Mesopelagics 1.48 (11.7) 1.42 0.43 (6.23) 0.42 
  Osmeriformes Bathylagidae Bathylagidae n/i Mesopelagics 0.01 (1.0) 0.01 0.05 (2.26) 0.05 
   Osmeridae Osmeridae n/i Mesopelagics 0.00 0.00 0.002 (0.27) 0.002 
  Perciformes Blenniidae Blennidae n/i Coastal fishes 0.01 (0.7) 0.003 0.00 0.00 
   Carangidae  Carangidae n/i Other Teleostei  0.09 (2.8) 0.08 0.30 (5.44) 0.3 
   Centrolophidae   Centrolophidae n/i Other Teleostei  0.01 (1.0) 0.01 0.05 (2.13) 0.05 
   Labrisomidae Labrisomidae n/i Coastal fishes 0.01 (0.6) 0.01 0.00 0.00 
   Sciaenidae Sciaena deliciosa Coastal fishes 0.01 (1.0) 0.01 0.00 0.00 
   Sphyraenidae Sphyraena spp. Coastal fishes 0.00 0.00 0.02 (1.27) 0.02 
   Trichiuridae Lepidopus spp. Coastal fishes 0.01 (1.0) 0.01 0.00 0.00 
    Trichiurus lepturus Coastal fishes 0.01 (1.0) 0.01 0.00 0.00 
  Pleuronectiformes Cynoglossidae Cynoglossidae n/i Coastal fishes 0.01 (0.4) 0.01 0.00 0.00 
  Scorpaeniformes Normanichthyidae Normanichthys crockeri  Coastal fishes 0.70 (8.2) 0.65 0.93 (9.46) 0.91 
  Stomiiformes  Stomiiformes n/i Mesopelagics 0.00 0.00 0.01 (0.91) 0.01 
   Phosichthyidae Phosichthyidae n/i Mesopelagics 0.00 0.00 0.0004 (0.04) 0.003 
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    Vinciguerria lucetia Mesopelagics 1.56 (12.0) 1.48 1.22 (10.59) 1.11 
   Sternoptychidae Maurolicinae n/i Mesopelagics 0.15 (3.4) 0.13 0.18 (3.69) 0.15 
  Syngnathiformes Syngnathidae  Syngnathidae n/i Coastal fishes 0.00 0.00 0.06 (2.44) 0.06 
    Leptonotus blainvilleanus Coastal fishes 0.07 (2.5) 0.07 0.13 (3.27) 0.08 

 

Table 4.2. Distribution of the thirteen dietary groups recovered from jack and chub mackerels stomach 
contents off Peru during 1973-2013. Are indicated, the dietary group, the prey code, the number of stomachs 
with presence, the mean value (±standard deviation) of the proportion by weight (%W), and the frequency of 
occurrence (%O). 

  Trachurus murphyi  Scomber japonicus   

 Prey code Nº Stomachs %W %O Nº Stomachs %W %O 

Tunicata Tunic 11 0.09 (3.01) 0.1 568 3.76 (18.21) 3.33 

Cephalopoda Cepha 79 0.57 (7.27) 0.56 366 2.34 (14.6) 2.33 

Copepoda Copep 936 7.10 (25.09) 7.26 2993 14.29 (31.98) 15.49 

Zoea larvae Zoea 1539 12.29 (32.38) 12.51 2412 13.35 (31.87) 13.08 

Euphausiidae Eupha 5732 49.31 (49.27) 49.09 4120 27.45 (42.68) 26.54 

Pleuroncodes monodon Pleur 907 7.66 (26.27) 7.61 778 5.39 (21.99) 5.24 

Other Crustacea Crust 496 3.15 (16.84) 3.35 1127 4.01 (17.48) 4.71 

Engraulidae Engra 575 4.96 (21.47) 4.83 1126 8.64 (27.77) 8.3 

Mesopelagics Mesop 413 3.20 (17.02) 3.03 297 1.90 (13.13) 1.75 

Coastal fishes Coast 148 1.21 (10.68) 1.16 208 1.52 (12.03) 1.43 

Other Teleostei Teleo 941 7.85 (26.49) 7.85 1847 12.93 (32.67) 12.37 

Eggs and larvae 
Teleostei 

EgLar 231 1.66 (12.29) 1.58 733 3.65 (17.61) 3.86 

Other Other 171 0.95 (9.37) 1.09 433 0.78 (7.67) 1.58 

 

4.2.4. Data analyses 

The proportions of empty stomachs per fishing set were computed for both species, using sets with 

at least 8 individuals of the same species. The effect of several covariates (fish length, sex, maturity, 

latitude and distance to the shelf break) was tested on the diet composition of CM and JM, using 

log-likelihood G tests for independence and the Williams’ correction (Sokal and Rohlf, 1995). In 

addition, covariates were assessed on stomach fullness index FWI and on condition factor Kn using 

Kruskal-Wallis and Wilcoxon rank sum tests. To investigate potential impact of ENSO events, we 

selected the periods encompassing the strongest El Niño (Oct. 1982 to May 1983 and Oct. 1997 to 

May 1998) and La Niña (Jan. 1975 to March 1976; July 1988-April 1989; all 1999 and 2000; August 

2010-May 2011) events. Other periods are considered as 'Neutral'. As very few CM were captured 

during El Niño events (only 39 stomachs), ENSO impact was investigated for JM data only. But 

large JM (size>40cm) were then removed because they were mainly captured during the very first 

years of the survey period.  The diel effect on JM and CM trophic ecology could not be fully 

assessed in this study due to a lack of information on time in most (>90%) of the dat base. We 
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however tested for diel effect on FWI on a subsample for which time was available and did not 

observed any robust pattern. 

To explore cross-shore patterns, the density of stomachs according to distance to the shelf break 

(km) was estimated for the whole data set of non empty stomachs with known distance to shelf 

break and for the subsets containing Euphausiidae, P. monodon or Engraulidae. A Gaussian kernel 

was used for modelling density with a bandwidth selected according to Venables and Ripley 

(2002). 

To take into account potential dependence and interactions between explanatory variables, we 

performed classification and regression tree (CART) analyses proposed by Breiman et al. (1984) 

and adapted to diet data by Kuhnert et al. (2011). Classification tree allows identifying the 

relationships between explanatory variables and the distribution of prey groupings. This non-

parametric method uses a partitioning algorithm to estimate a series of binary decision rules that 

divide the data into smaller homogeneous subgroups in an optimal way. The whole dataset is 

represented by a single node at the top of the tree. Then the tree is built by repeatedly splitting the 

data. Each split is defined by a simple rule based on a single explanatory variable. Diet data were 

transformed following Kuhnert et al. (2011). Each row represents a unique predator-prey 

combination, where the proportion by wet weight of one of the thirteen prey taxa potentially 

present in the stomach is used as a case weight for the classification tree. As the splitting procedure 

grows an overlarge tree, we applied a prune back procedure. Each terminal node (or leaf) of the 

final tree is characterized by a predicted probability distribution of prey composition (proportion 

by weight of groups), given explanatory continuous and categorical variables. We first performed 

a CART analysis on the stomachs of JM (1973-2013) using four explanatory continuous variables 

(fish length, year, SSTA, Z15ºC) and two categorical variables (zones: north, centre-north, centre-

south, south; distance to the shelf break: -100 to -10 km, -10 to 10 km, 10 to 40 km , 40 to 80 km and 

>80 km). This analysis allowed us to account for the temporal variation (year effect) that could not 

be considered with CM data due to the absence of data for eight years (see Figure 4.5D). We then 

implemented a new CART analysis with diet data of both species using the same exploratory 

variables and species (CM and JM) as well, but without year. 

JM and CM were also used as biological samplers for documenting the diversity of the forage 

fauna. Diet composition can indeed provide valuable information on diversity changes over time 

and space. Datasets based on occurrences of a total of 60 and 62 prey taxa identified in the 

stomachs of JM and CM respectively were used to compute average tables of occurrences of prey 

taxa per year, per zone and per category of distance to the shelf break. A correspondence analysis 
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performed on the average table per year for JM (analysis not performed on CM due to the absence 

of data for eight years) showed that the first axis was a good proxy of the temporal evolution of the 

composition of prey taxa. The first axis was thus used to order year and taxa in the graphical 

representation of this average table. A hierarchical clustering of the years according to their 

coordinates in the correspondence analysis was used to perform a typology of the main groups of 

years based on their prey taxa composition. In addition we estimated the richness of forage fauna 

of CM and JM by computing the species richness indexes Sobs on the 60 and 62 prey taxa and for all 

the modalities of the factors of interest (year, zone and categories of distance to the shelf break). 

But sample size (i.e., number of stomachs) strongly influences species richness. To deal with this 

bias, we applied a bootstrap procedure and randomly took with replacement m stomachs from the 

n recovered in a modality of a given factor. This procedure was repeated 500 times and a (Sboot)i 

was calculated for all the samples i = 1,… 500. We choose m = 100 for year and m = 500 for zone 

and distance to the shelf break, according to the corresponding sampling effort by modality. Years 

with less than 100 stomachs were discarded. Finally, for both species, we computed the mean and 

standard deviation of the bootstrap samples (Sboot)i for each modality and for all the factors of 

interest.   

The Sørensen index was used to compare the similarity of El Niño vs. La Niña periods and 

before/after 1996 periods in terms of presence/absence of taxa. 

Analyses were conducted using the R software (R Core Team 2013), with the rpart package for the 

classification tree (Venables and Ripley, 2002). 

4.3. Results 

4.3.1. Overall diet description 

In total 47,535 stomachs (18,377 CM and 29,158 JM) were analysed, of which 23,570 (12,476 CM and 

11,094 JM) were non-empty. The proportion of empty stomachs was much higher for JM (62%) 

than for CM (32%). This proportion was lower for samples collected by research vessels (36% and 

22% for JM and CM, respectively) than by commercial vessels (64% and 33% for JM and CM, 

respectively). In addition, considering all samples the distribution of the proportion of empty 

stomachs per fishing set was different for CM and JM (Figure 4.3). For CM, 39% of the fishing sets 

had less than 10% of empty stomachs and only 6% had more than 90% of empty stomachs. In 

contrast, empty stomachs of JM were concentrated in some fishing sets: 21% of the fishing sets had 

more than 90% of empty stomachs. 
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Figure 4.3. Distribution of the ratio of empty stomachs per fishing set for (A) Trachurus murphyi and (B) 

Scomber japonicus. 

Despite some disparity, the overall diet composition in wet weight (Figure 4.4) was not 

significantly different between JM and CM (G = 14.6, p = 0.265). Euphausiidae was the dominant 

prey for both species and contributed to 49.3 and 27.4% for JM and CM, respectively. Zoea larvae 

(12.3%), P. monodon (7.7%), copepods (7.1%) and other teleostei (7.0%) were the additional main 

prey groups for JM, while copepods (14.3%), Zoea larvae (13.3%), other teleostei (12.9%) and 

Engraulidae (8.6%) were the extra main prey groups for CM (Figure 4.4). Overall diets of both 

species were dominated by zooplankton (74% and 82% and for CM and JM, respectively), and 

contribution of fish was higher in CM diet (25% and 17% for CM and JM, respectively).  

 

Figure 4.4. Trachurus murphyi (light grey bars - 11094 stomachs) and Scomber japonicus (dark grey bars - 

12476 stomachs) diet composition in wet weight (%) by prey group. 



P a g e  | 58 
Trophic ecology of jumbo squid and predatory fishes in the Northern Humboldt Current System 
 
The diet composition of JM varied significantly (G = 277.7; p < 0.0001) according to size (Figure 

4A). Euphausiidae contribution by wet weight increased with size until 40 cm (41.8% for JM less 

than 21 cm and 56.5% for fish size ranging 31-41 cm), but decreased to 6% for individuals larger 

than 51 cm. Fish contribution was low for JM < 41 cm (maximum contribution 16.2%) but this 

pattern reversed for larger sizes. Engraulidae dominated indeed the fish diet composition of JM 

larger than 41 cm, and the largest JM (> 51 cm) foraged mainly on Engraulidae (55.5%) and other 

teleostei (25.3%). CM did not exceed 40 cm and its diet composition (Figure 4.5A) did not very 

significantly with size (G = 29.8; p = 0.19). Euphausiidae contribution however increased from 

12.7% for CM < 21 cm to 28.3% for CM larger than 31 cm. Diet composition according to maturity 

stages had similar trends to those observed for fish size, and neither diet composition of JM and 

CM varies with sex (G = 2.51, p = 0.99 and G = 0.72, p = 1, respectively). Sex and maturity stages 

were therefore not taken into account in further analyses. 
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Figure 4.5. (A) Diet composition of Trachurus murphyi (JM) and Scomber japonicus (CM) in mean weight 

percentage (%W) according to the individual fork length (in cm). (B) Diet composition of JM and CM in 

%W according to the latitudinal zone. (C) Diet composition of JM and CM in %W according to the distance 

to the shelf break (in km, negative inshore and positive offshore).  (D) Diet composition of JM and CM in 

%W per season. (E) Diet composition of JM and CM in %W per year from 1973 to 2013. 
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4.3.2. Spatial patterns 

JM and CM diet composition had similar trends according to latitudinal zones (Figure 4.5B). The 

contribution of species associated to the coastal upwelling (e.g. Engraulidae, costal fishes, P. 

monodon, Zoea larvae) increased in the centre-south zone (10-15°S) while other species (e.g. 

Euphausiidae and copepod) showed an opposite trend.  

 

Figure 4.6. Kernel density estimates of stomachs numbers for the whole datasets and for the subsets 

containing Euphausiidae, P. monodon and Engraulidae according to distance to the shelf break (in km, 

negative inshore and positive offshore) for (A) Trachurus murphyi and (B) Scomber japonicus; the numbers 

in parenthesis indicate the number of stomachs. 

Diet composition according to the distance to the shelf break (Figure 4.5C) illustrates the higher 

contribution of coastal species over the shelf (distance ≤ 10 km). The density distribution of the 

occurrence in the stomachs of two 'coastal' prey taxa (Engraulidae and P. monodon) and of one 

‘oceanic’ one (Euphausiidae), showed that the highest density for P. monodon was located before 

the shelf break for both JM and CM (Figure 4.6). The distribution of Engraulidae was similar to the 

one of P. monodon for CM, but more widely extended for JM. Finally, Euphausiidae were clearly 

distributed after the shelf break, with a wide distribution for both CM and JM. Note that these 
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cross-shore patterns were not related to changes in fish size except for CM that presented slightly 

smaller sizes inshore. 

4.3.3. Temporal patterns 

Seasonal variations in JM and CM diet composition were slight and rather inconsistent between 

species (Fig. 4.5D). We can note, however, a lesser importance of Zoea larvae in fall and an 

opposite pattern for Engraulidae. Yearly changes between 1973 and 2013 highlight the fact that 

Euphausiidae clearly dominated by wet weight the diet of JM before year 2000 (67.7% ± 46.2) 

whereas contribution was reduced by half after 2000 (31.9% ± 45.6) (Figure 4.5E). Proportion of 

Zoea larvae showed an opposite trend (0.3% ± 4.7 before year 2000 and then 23.8% ± 42.0), such as 

P. monodon (1.3% ± 11.0 before year 2000 and then 13.8% ± 34.1). Fish consumption by JM 

(especially Engraulidae) was rather modest except in 1975-1977. Temporal patterns were blurred 

for CM because of a lack of data for several years. However, as for JM but to a lesser extent, 

Euphausiidae contribution by wet weight was higher until year 2000 (41.0% ± 47.1 vs. 22.0% ± 39.5 

after 2000). Once more, proportions of Zoea larvae and P. monodon exhibited an opposite trend 

(1.4% ± 10.7 before 2000 vs. 18.2% ± 36.0 after for Zoea larvae; 1.0% ± 9.7 before 2000 vs. 7.2% ± 25.1 

after for P. monodon). In addition, the mean condition factor of JM computed for the period 1973-

1999 was significantly lower than the mean computed after 1999: Kn = 0.96 ± 0.11 before year 2000 

and Kn = 1.05 ± 0.10 for the period 2000-2013 (p<0.0001; Figure 4.7A). The condition factor of CM 

exhibited the same significant pattern despite the missing years: Kn = 0.94 ± 0.15 vs. 1.04±0.10 

(p<0.0001; Figure 4.7B). On the contrary, the fullness of non-empty stomachs for both species was 

significantly higher for the period 1973-1999 than for the period 2000-2013 (JM: FWI=0.94 ± 1.51 vs. 

0.77 ± 1.22, p<0.000; CM: FWI=1.62 ± 2.01 vs. 1.22 ± 1.51, p<0.0001; Fig. 4.7). 
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Figure 4.7. Year evolution of the relative condition factor (Kn) of (A) Trachurus murphyi and (B) Scomber 

japonicus. Box width is proportional to square root of the number of stomachs sampled for a given year. The 

red line corresponds to a theoretical value of Kn=1. 

 

Figure 4.8. Year evolution of the Fullness Weight Index (FWI) for non empty stomachs of (A) Trachurus 

murphyi and (B) Scomber japonicus. Box width is proportional to square root of the number of stomachs 

sampled for a given year. Outliers are not printed. 
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4.3.4. El Niño and La Niña 

For JM less than 40 cm, the percentage of non-empty stomachs was identical during El Niño and 

La Niña periods (24.3%). However the fullness of non-empty stomachs was significantly higher 

during El Niño than during La Niña periods (1.55 ± 1.56 vs. 0.71 ± 1.00, p<0.0001), whereas the 

condition factor Kn was significantly lower during El Niño than during La Niña periods (0.92 ± 

0.12 vs. 1.02 ± 0.10, p<0.0001). Diet composition did not differ between El Niño, La Niña (and 

'Neutral') periods (Figure 4.9) despite higher contributions by wet weight of teleostei (17.8% vs. 

3.9%) and of eggs and larvae of teleostei (8.6% vs. 0.2%), a lower proportion of Zoea larvae (<1% vs. 

7.3%) and an absence of P. monodon during El Niño period (10.4% during La Niña). The 

contribution of Euphausiidae did not vary between El Niño and La Niña periods (52.0% vs. 53.9%). 

 

Figure 4.9. Trachurus murphyi diet composition in wet weight (%) by prey group during El Niño (dark grey 

bars), La Niña (grey bars) and Neutral (light grey bars) periods. 

4.3.5. Multivariate approach 

Figure 4.10 shows the pruned classification tree performed on JM diet data. The first split 

separated stomachs according to time. Before 2000, JM diet was dominated by Euphausiidae. 

Among this group, the main node (Node #4; n=5031) encompassed individuals smaller than 40 cm 

with a predicted diet dominated by Euphausiidae (predicted probability = 0.74). The predicted diet 

of JM larger than 40 cm showed the dominance of copepoda (Node #1; n=125) and Euphausiidae 

(Node #2; n=198) for individuals collected from 1978 to 1999 (predicted probability = 0.77 and 0.60, 

respectively) and of Engraulidae for fish collected before 1978 (Node #3; n=459; predicted 

probability = 0.51). From 2000, a second temporal split occurred in 2002. In 2000 and 2001 the 
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predicted diet was dominated by P. monodon when Z15ºC was deeper than 85 m (Node #6; n=143; 

predicted probability = 0.85) and by other teleostei and Euphausiidae when Z15ºC was shallower 

than 85 m (Node #5; n=804; predicted probability = 0.30 and 0.27, respectively). From 2002 the 

predicted diet composition was more diverse. Zoea larvae (Node #9; n=1662; predicted probability 

= 0.45) and Euphausiidae (main predicted prey in Nodes 7 and 8 with probability of 0.37 and 0.36, 

respectively) were the dominant prey but other prey taxa such as P. monodon contributed a lot (e.g. 

predicted probability = 0.24 in Node #8 and 0.10 in Nodes #7 and #9). 

 

Figure 4.10. Classification tree of Trachurus murphyi diet (prey groups) according to the year, Z15ºC (in m), 

the size (in cm), the SSTA (in ºC), the distance to the shelf break (in km, negative inshore and positive 

offshore) and the zone (North, Centre, South). For each final node, the predicted probabilities of occurrence of 

the 13 prey groups is detailed (histograms). See Table 2 for prey codes. 

The second classification tree was performed on both JM and CM diet, without taking into account 

the year effect (Figure 4.11). The pruned classification tree showed seven nodes and the first split 

discriminated the two species. The predicted diet of JM smaller than 43 cm was dominated by 

Euphausiidae (Node #7; n=11,447; predicted probability = 0.51). The diet of larger JM distributed 
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in waters with Z15ºC < 89 m was dominated by copepods (Node #4; n=79; predicted probability = 

0.97) and by Euphausiidae (Node #5; n=395; predicted probability = 0.36), while those distributed 

in waters with Z15ºC ≥ 89 m fed mainly on Engraulidae (Node #6; n=258; predicted probability = 

0.65). The predicted diet of CM in the north, centre-north and south zones was dominated by 

Euphausiidae (Node #1; n=5937; predicted probability = 0.43). In the centre-south zone, the 

predicted diet composition of CM distributed around and off the shelf was mainly distributed 

between Euphausiidae, Zoea larvae, copepoda and other teleostei (Node #3; n=8143; predicted 

probability = 0.24, 0.17, 0.14, and 0.12, respectively). The predicted diet of CM distributed over the 

shelf was dominated by teleostei, Engraulidae, P. monodon and Zoea larvae (Node #2; n=2928; 

predicted probability = 0.24, 0.18, 0.12, and 0.12, respectively). 

 

Figure 4.11. Classification tree of Trachurus murphyi and Scomber japonicus diet (prey groups) according to 

the species, Z15ºC (in m), the size (in cm), the SSTA (in ºC), the distance to the shelf break (in km, negative 

inshore and positive offshore) and the zone. For each final node, the predicted probabilities of occurrence of 

the 13 prey groups is detailed (histograms). See Table 2 for prey codes. 
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4.3.6. Diversity of the prey taxa 

The average occurrence of the 60 prey taxa of JM per year showed a clear temporal pattern (Figure 

4.12), summarized by the first axis of the Correspondence Analysis. Years were classified into two 

groups, before and after 1996. The classification satisfied temporal contiguity except year 1997 

grouped in the first period (note that in 1997 most of samples were collected before the rise of El 

Niño).  

 

Figure 4.12. Mean occurrence of Trachurus murphyi prey taxa per year. Group 1: Anchoa sp., Lepidopus 

sp., Squilla sp. and Trichiurus lepturus ; Group 2: Blenniidae, Cynoglossidae, Labrisomidae. Prey taxa and 

years are ordered after their position on the first axis of the correspondence analysis of the table which 

expresses a temporal gradient in the prey distribution. The solid horizontal line discriminates between the 

two clusters obtained by the hierarchical clustering. 
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The first period is characterised by low diversity (mainly 15 prey taxa); the main prey were 

Euphausiidae, other teleostei, copepoda and Engraulidae. Some other taxa such as the hake 

Merluccius gayi peruanus, were also reported (in 1975 and 1976). On the opposite, a larger number 

of taxa were observed from 1996. Among them, Zoea larvae and Pleuroncodes monodon were largely 

dominant, but other taxa such as Vinciguerria lucetia, teleostei larvae and stomatopoda were also 

frequently observed in the JM stomach content. Finally, Euphausiidae, copepoda, other teleostei, 

occurred throughout the whole study and composed the stable part of the prey taxa community.  

 

Figure 4.13. Observed and estimated (see text) index of prey taxa richness for Trachurus murphyi (left 

panels) and Scomber japonicus (right panels) computed according to (A) the year; (B) the latitudinal zone; 

and (C) the distance to shelf break (in km, negative inshore and positive offshore). The number of observed 

stomachs (grey circles) is indicated on the right axis. The estimated index is given for 100 stomachs for years 

and for 500 stomachs for latitudinal zones and categories of distance to the shelf break. 

For both species, the estimated richness index Sboot per year for 100 stomachs (Figure 4.13A) was 

significantly (p < 0.0001) higher since 1996 (11.3±2.9 for JM; 15.1±3.1 for CM) than before (6.2±3.4 

for JM; 6.9±3 for CM). This is confirmed by the the Sørensen (1948) index of similarity calculated 
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between both periods (before and after 1996). The index value was 0.68, with 31 prey taxa common 

to both periods but 6 versus 23 unique prey taxa before and after 1996 respectively. 

Regarding the estimated richness index for 500 stomachs per latitudinal zone (Figure 4.13B), the 

highest values were observed in the Centre-South zone (10°-15° S) for both species (28.7±2.4 for JM 

and 38.5±2.4 for CM). The Centre-North (6°-10°S) and the Southern (15º-18ºS) zones presented 

similar estimated richness with 24.5±1.8 and 24.5±2.0 for JM, and 34.7±1.8 and 30.5±2.1 for CM; 

while the Northern zone (<3º-6ºS) presented the lowest richness (20.4±1 for JM and 19.5±2 for CM). 

Finally, the estimated richness for 500 stomachs per categories of distance to the shelf break (Figure 

4.13C) varied between 24 and 28 taxa for JM and between 30 and 36 taxa for CM. All differences 

between categories of distance to the shelf break were significant, except for CM between (-10 to 10 

km) and (40 to 80 km), but no trend was clearly identified.  

We also tested the impact of El Niño and La Niña periods on JM prey diversity. The diversity was 

significantly (p<0.001 in all cases) lower during El Niño (11.5±1.6) than neutral (15.7±2.3) and La 

Niña (16.2±2.0) periods. The Sørensen index of similarity (1948) strengthens these findings. The 

index value was 0.57 between El Niño and La Niña periods, with 12 common prey taxa but 5 

versus 13 unique prey taxa for El Niño and La Niña periods, respectively. 

4.4. Discussion 

This work is based on a wide dataset on JM and CM diet encompassing a large range of 

spatiotemporal location and sizes. Beyond the usual diet description, our results provide new 

knowledge on the comparative trophic behaviour of these species, in particular the role of 

geographical features and how interannual and decadal climatic variability impact ecosystem 

structure and fish trophic ecology.  

4.4.1. Overall diet, size effect and comparative trophic ecology 

JM and CM distribute over an area larger than the Peruvian EEZ (Bertrand et al. 2004a) and are 

considered as opportunistic foragers adapting their trophic behaviour to prey accessibility 

(Konchina, 1981; Konchina, 1982; Muck and Sánchez, 1987). Our results confirm such opportunistic 

trophic behaviour since both species foraged over a large variety of taxa (60 and 62 for JM and CM, 

respectively) but the picture of the diet combining all data (Figure 4.4) hides high spatiotemporal 

variability. The global diet of both species was widely dominated by zooplankton (82% and 74% 

for JM and CM, respectively). Such results are in accordance with most published studies (e.g. 
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Konchina, 1982; Konchina et al., 1996; Castro Hernández and Santana Ortega, 2000; Antezana, 

2010). The diet of JM varied with size (Figures 4.5A, 4.10). Individuals less than 40 cm consumed 

mainly zooplankton, in particular euphausiids, Zoea larvae, P. monodon and, for the smallest (<21 

cm), copepods. Over ~40 cm the diet shifted toward a dominance of fish with an important 

contribution of Engraulidae that exceeded 50% for JM larger than 50 cm. Such shift has already 

been reported (Muck and Sánchez, 1987; Ermolovich and Gardina, 1994). This change in diet 

composition with fish size can be attributed to the predator’s ability to capture and handle the prey 

(Christensen, 1996; Lundvall et al., 1999). Large JM have access to highly energetic prey such as the 

Peruvian anchovy Engraulis ringens. However overfishing removed these large JM from the system 

(Gerlotto et al., 2012). This could explain why high fish proportion in the diet was only observed in 

the first years of our time series before the JM commercial fishing development (Figure 4.5D). On 

the opposite, CM, which has a lower size-range than JM, did not present clear ontogenetic trend 

towards larger prey. Such pattern was already mentioned by Konchina (1982). Indeed in her and 

our study (but not in Muck and Sánchez, 1987) CM foraged on small zooplankton (Copepoda) at 

all size class and its contribution was even greater in CM >30 cm while small CM could 

paradoxically consume more fishes than large CM (Figures 4.5A, 4.11).  

The proportion of non-empty stomach was low (38%) for JM, in accordance with other studies 

(Medina and Arancibia, 2002). This proportion reached 68% for CM; such high proportion was also 

reported by Konchina (1982, 1990) off Peru. This specific difference could be due to higher food 

regurgitation during capture for JM or to a difference in feeding behaviour (see Konchina, 1990). In 

our dataset, the distribution of proportion of empty or non empty JM stomach per fishing set 

(Figure 4.3) was not homogeneous, indicating that the behavioural hypothesis with JM foraging 

actively only at given periods/places is the most likely.  

Even if there is a trophic overlap between JM and CM, as observed by other authors (Konchina, 

1992; Medina and Arancibia, 1998), their diet exhibited various differences. Surprisingly despite 

their smaller maximal size, CM consumed more fish than JM (25% vs. 17%). This contradicts the 

idea of JM being more voracious than CM (Medina and Arancibia 1998). Actually CM diet was 

more diverse (Table 4.1) and it consumed a larger amount of large prey (fish) but also of small prey 

(copepoda and eggs and larvae of teleostei).  

4.4.2. Spatial patterns 

JM and CM diet varied according to the along-shore (latitude) and cross-shore (distance to the 

shelf break) ranges with related patterns. The contribution of Euphausiidae and other oceanic 
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components (e.g. mesopelagic fishes) was greater off the shelf break but also in northern (north of 

~10ºS) and southern (south of ~15ºS) Peru. On the opposite the contribution of coastal taxa (e.g. P. 

monodon, Engraulidae and coastal fishes) was higher in central Peru (from ~10º-15ºS). The 

latitudinal pattern can be related to genuine latitudinal effects on plankton distribution (Ayón et 

al., 2008a) and the geography of the Peruvian coast than. Indeed the shelf offshore extension is 

much larger in central Peru than in the north and south boundaires (see Figure 4.2 for the shelf 

break position as illustrated by the 200 m isobath). The shelf break is thus a strong biogeographical 

barrier affecting species distribution (e.g. Ballón et al., 2011) and therefore the fish diet.  

4.4.3. Long term trend and the Euphausiidae paradox 

Euphausiids were strongly dominant in JM diet before 2000, while after 2000 P. monodon and Zoea 

larvae took much more importance. The increase of P. monodon in fish diet is consistent with the 

dramatic increase in P. monodon observed off Peru since the late 1990s (Gutiérrez et al., 2008). 

Similarly, the population of coastal sand crab Emerita analoga, which makes the bulk of Zoea larvae 

(Blaskovic et al., 2009), was likely favoured by the increase in productivity observed off Peru 

during the last decades (Sifeddine et al., 2008; Gutiérrez et al., 2009). The case for Euphausiidae is 

more paradoxical. Indeed Euphausiidae contribution to JM diet was very high from the late 1970 to 

the late 1990s and dropped then after. This trend is contradictory with the actual trend in 

euphausiids abundance off Peru (Ayón et al., 2011) that presented lower biomasses in the late 1970-

1990s when the NHCS was less productive and more oxygenated than before and since the late 

1990s (Ayón et al., 2011; Bertrand et al., 2011). 

Let us consider JM and CM be opportunistic foragers as indicated in Konchina (1981, 1982), Muck 

and Sánchez (1987) and in the present work; changes in their diet should then as indicated changes 

in the ecosystem. Indeed JM abundance and biology is know to be affected by climatic regime 

(Csirke, 2013). Here we showed that changes in prey contribution actually correspond to observed 

changes in the ecosystem in the case of P. monodon but not for Euphausiidae. This paradox can be 

explained by the fact that P. monodon and Zoea larvae are prey easy to handle and, as part of the 

epipelagic community, they are concentrated in dense patches within a thin surface layer above 

the oxycline (Bertrand et al., 2011, 2014). Additionally, they are accessible during the complete diel 

cycle when most Euphausiidae perform diel vertical migration and are inaccessible during the day 

(Ballón et al., 2011). Furthermore, P. monodon energy content is high. Aurioles-Gamboa et al. (2004) 

showed that the fatty acid composition of a close species, P. planipes, directly depended of the 

available food quality. In the highly productive NHCS, P. monodon has high protein and fatty acid 
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content (Gutierrez, 2002) and is exploited to produce seafood oil, and protein concentrates. JM thus 

responded and adapted to the increased abundance increased availability and biomass of P. 

monodon and Zoea larvae. The temporal shift in diet composition was accompanied by a shift in 

fish condition: the condition factor of JM was significantly lower before than after 2000. Such 

difference can be due to a change towards better food quality but also to density dependence 

processes. Indeed JM has been over-exploited in the southeastern Pacific 

(www.southpacificrfmo.org) and was more abundant during the late 1970-mid 1990s when 

macrozooplankton (in particular Euphausiidae) abundance was lower (Ayón et al., 2011). On the 

opposite, in recent year, when JM was less abundant, macrozooplankton biomass was high (Ayón 

et al., 2011; Ballón et al., 2011) and prey were concentrated over a thin surface layer (Bertrand et al., 

2011). The incomplete time series for CM diet blurs the conclusion that could be drawn on decadal 

patterns. However as for JM, CM foraged on a high proportion of P. monodon and Zoea larvae 

since the early 2000s when they were abundant in the system. Its condition factor was also higher 

after 2000 than before. 

Our findings show that diet composition of CM and JM reveal ecosystem changes but is not 

always a good indicator of specific changes in prey biomass as illustrated in the euphausiids case. 

Indeed the decadal changes in JM diet point out that it target the most abundant prey, and within 

these prey would prefer those that are the most accessible(e.g. along the whole diel cycle  and 

concentrated in dense layer), demand less energy to grab or catch and provide a higher energy 

intake per energy invested. Foraging behaviour does matter in our long-term feeding study. 

4.4.4. El Niño and La Niña events: do they matter? 

The NHCS is a region notably affected by El Niño southern oscillation (Chavez et al., 2008). 

Exceptional El Niño events, such as those that occurred in 1982-83 and 1997-98, affect all marine 

ecosystems components (e.g. Barber and Chavez, 1983; Arntz and Tarazona, 1990; Fiedler, 2002) 

including JM and CM populations (Arcos et al., 2001; Bertrand et al., 2004b; Gerlotto et al., 2012). 

Actually, the condition factor was lower during El Niño than La Niña periods. Surprisingly we 

observed an opposite pattern in terms of fullness since the percentage of non-empty stomach was 

identical during El Niño and La Niña periods (24.3%) but the fullness of non-empty stomachs was 

significantly higher during El Niño than La Niña periods. This counterintuitive result also 

observed by Dioses (1985) could be due to a higher metabolic requirement during warmer El Niño 

condition. However, specific bioenergetic 499 studies need to be conducted to propose a robust 

interpretation..  
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Prey diversity was significantly lower during El Niño (see also next section) but contrary to 

previous studies (Muck and Sánchez, 1987; Sánchez de Benites and Muck, 1987) we did not 

observed strong differences in diet composition between El Niño, La Niña and neutral periods 

(Figure  4.9). Comparable results were observed on anchovy diet with no clear changes in diet 

composition and stomach fullness related to El Niño or La Niña events (Espinoza and Bertrand, 

2008). The difference between our studies and those reporting an ENSO effect (e.g. Sánchez de 

Benites and Muck, 1987) is most likely due to samples size. Comparing two years (e.g. an El Niño 

versus a La Niña year) can lead to misleading conclusion when number of samples is low. Indeed 

our findings demonstrated a high spatiotemporal variability in diet composition of CM and JM. 

Over-interpretation could have been resulting from data collected in narrower spatial and/or 

temporal ranges.  

The reason for such a weak effect of ENSO events on pelagic fish trophic ecology is puzzling. 

euphausidae are the main prey group for pelagic fishes (this study, Espinoza and Bertrand, 2008; 

Espinoza et al., 2009), and their occurrence and abundance seem highly resilient to El Niño events 

(Brinton, 1967; Ballón et al., 2008; Aronés et al., 2009). Other pelagic components with a wide range 

of distribution may also be little affected by El Niño events, in particular when local efficient 

upwelling occurs as during El Niño 1997-98 (Bertrand et al., 2004b). However additional 

information is required to disentangle the different mechanisms and understand this paradoxical 

result. 

4.4.5. When prey diversity decreases with temperature 

Although the reasons of this gradient are still debated (Clarke and Gaston, 2006) temperature and 

species richness are strongly correlated (e.g. Frank et al., 2007). This pattern leads to a global 

negative association between taxonomic richness and latitude (e.g. Willig et al., 2003) Interestingly 

our results challenge such paradigm. Indeed, prey diversity was significantly lower in northern 

Peru, where the warm tropical and equatorial waters matter (Swartzman et al., 2008), than further 

south where colder upwelling waters dominate. In addition our findings clearly evidenced such a 

counterintuitive pattern at a decadal time scale over a large latitudinal range (15º). The system was 

characterised by warmer conditions between the early 1970s to the mid-1990s than then after. On 

the basis of the temperature-diversity relationship we would expect more diversity, with an 

increase of tropical species, before than after the mid-1990 but the opposite was observed with a 

twofold increase in diversity during the cooler period. The increase was mainly due to 'cold 

species'. Factors other than temperature were thus the dominant drivers of diversity. It is thus 
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important to point out that the period ranging between the early 1970s to the mid 1990s was 

warmer but also less productive and more oxygenated compared with the period from the mid 

1990s (Chavez et al., 2003; Bertrand et al., 2011; Gutiérrez et al., 2011). In the same sense prey 

diversity was lower during the 'warm' El Niño periods than during neutral or La Niña periods. 

These spatiotemporal patterns seem to indicate that diversity in the NHCS is probably more 

driven by productivity than temperature. Interestingly, the latitudinal variability of temperature is 

peculiar in eastern boundary upwelling systems, since most of it results from combined effects of 

solar seasonal heating and latitudinal variations in upwelling-favourable wind intensity (Fréon et 

al., 2009) so to chemical energy. However, oxygen may also play a role. Actually even if some 

species, such as sardine, are 'expulsed' from the system in cold-productive-low oxygen periods 

(Bertrand et al., 2011) others species associated to cooler conditions, such as the squat lobster, 

dramatically increase in biomass (Gutiérrez et al., 2008b). Furthermore, under conditions of low 

oxygen and high production (such as in the late 2000s), the epipelagic community is concentrated 

within a thin surface layer (Bertrand et al., 2011) where ephemeral fine scale oases boost up trophic 

interactions and thus energetic transfer (Bertrand et al., 2014).  

4.5. Conclusion 

In summary, from this long term study of stomach content data, we provided a comprehensive 

description of the trophic ecology of two important pelagic fish, the jack and chub mackerels 

according to spatiotemporal patterns. Further, the vast amount of data used in this study allowed 

addressing questions beyond classic diet description. Indeed we demonstrated that fish diet 

composition reveal ecosystem changes but is not always a good indicator of changes in prey 

biomass since prey accessibility and energy content do matter. In addition we revisited the impact 

of El Niño events on fish diet and showed that these events have weak but unexpected effects. 

Finally, our results challenge the paradigm of positive correlation between diversity and 

temperature in the Humboldt Current System; energy content of forage species and the intensity of 

the oxygen minimum zone most likely play an important role. 
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Chapter V 

General conclusions and perspectives 

The Northern Humboldt Current System (NHCS) is a highly productive ecosystem, but it is 

also highly variable at a wide range of temporal and spatial scales (Chavez et al., 2003). On the one 

hand the temporal variability is expressed by short (seasonal), medium (interannual), long 

(secular) and very long term (climate change) temporal patterns (Chavez et al., 2003; Valdés et al., 

2008; Gutiérrez et al., 2009; Espino and Yamashiro, 2012; Salvatteci, 2013; Espino, 2013). The NHCS 

is the region where El Niño Southern Oscillation (ENSO) and climatic variability in general are 

indeed outstanding (cf Introduction section). On the other hand environmental conditions that 

fluctuate in time also affect the spatial organization of living organisms by shaping habitat and 

determining resource availability. Predator-prey relationships are therefore directly impacted by 

environmental variability that lead to the match or mismatch between predator requirements and 

resource availability. Thanks to this variability in the NHCS, the species have had to evolve rapid 

adaptive strategies in space and time (Bertrand et al., 2004c).  

The results of this thesis provide a better understanding of the trophic ecology of the jumbo squid 

Dosidicus gigas and two fish predators the jack mackerel Trachurus murphyi and the chub mackerel 

Scomber japonicus in the NHCS (Chapters III and IV).  

5.1. Synthesis of the foraging ecology of jumbo squid, chub 

mackerel and jack mackerel   

We investigated the trophic ecology of the three species of interest using the standard method 

of stomach content analyses. We used the gravimetric method as an indicator of diet composition 

by wet weight, because this method is relevant when large amounts of material are collected, as it 

is the case for this study. Processing diet data by dry weight is much more time consuming and is 

usually employed when accurate determination of calorific intake are required (Li & Brocksen, 

1977 in Hyslop, 1980).  

The availability of an extensive dataset of diet composition provided a novel knowledge on 

the trophic ecology of the three species. A total of 27,188 non-empty stomachs were analyzed 
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allowing us characterizing the highly variable feeding patterns of these species at different 

temporal and spatial scales. Hence we provided new knowledge on the comparative trophic 

behaviour of these species, defined as opportunistic by previous investigations (Konchina, 1982; 

Konchina et al., 1996; Nigmatullin et al., 2001; Markaida and Sosa-Nishizaki, 2003). More 

interestingly we shed light on the spatial organization of the forage fauna of these predators that 

shape the resource partitioning.  

Opportunistic foragers are considered as actual indicators of ecosystem changes. We showed 

here that diet composition is not always a good indicator of changes in prey biomass. We provided 

new insight on the changes in prey composition according to size and spatiotemporal features of 

local environment (Chapters III and IV) and on the major role played by dissolved oxygen 

(Chapter III). Our findings helps to better understand the resilience of jack mackerel and chub 

mackerel to climatic changes including El Niño Southern Oscillation (ENSO) events (Chapter IV).  

The ontogenetic and spatiotemporal variability of jumbo squid diet, described in Chapter III, 

constitute the first work based on more than 4,000 non-empty stomachs. We described the 

opportunistic trophic behavior of jumbo squid and confirmed that this species forage on a large 

variability in prey composition; similar to what was observed in other latitudes (Nigmatullin et al., 

2001; Markaida and Sosa-Nishizaki, 2003; Chong et al., 2005; Rosas-Luis, 2007; Ibáñez et al., 2008). 

The predictions of the multinomial model showed that, while most of the stomachs contained one 

or two prey taxa only, stomach fullness increases with the number of prey taxa. These results do 

not support the hypothesis that jumbo squids select the most abundant or energetic taxon in a prey 

assemblage, neglecting the other available prey. Indeed, other top predators such as tuna exhibit 

high foraging efficiency (high fullness) in presence of large and dense monospecific prey 

aggregations in surface layers (Bard et al., 2002; Bertrand et al., 2002a; Menard and Marchal, 2003; 

Potier et al., 2008). We showed that the shallow OMZ present off coastal Peru could hamper the co-

occurrence of jumbo squids. In addition we proposed a conceptual model on jumbo squid trophic 

ecology including the ontogenetic cycle, oxygen and prey availability. 

We investigated the foraging behavior of jack mackerel and chub mackerel (Chapter IV) based 

on a wide dataset of more than 23,000 non-empty stomachs. To the best of our knowledge, this is 

the first study that uses diet information of jack mackerel and chub mackerel, collected during a 

time series of more than 40 years. This work provided new insights into the spatiotemporal 

variability of feeding habits of jack mackerel and chub mackerel and on prey diversity in the 

NHCS. We showed for the trophic behaviour of both species are adapted to forage on more 

accessible species, such as for example P. monodon squat lobster and Zoea larvae that focus on 
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dense patches within a surface layer above the oxycline (Bertrand et al., 2014, 2011).  Besides, these 

species foraged over a large variety of taxa and the diet was dominated by zooplankton.  Such 

results are in accordance with others studies focusing on the diet of these species (Antezana, 2010; 

Castro Hernández and Santana Ortega, 2000; Konchina et al., 1996). Both species present a trophic 

overlap. But surprisingly, jack mackerel was not as voracious as chub mackerel, contradictorily to 

what was observed by others authors (Medina and Arancibia 1998). Fish diet presented high 

spatiotemporal variability, and shelf break appeared as a strong biogeographical frontier. Diet 

composition of our fish predators was not necessarily a consistent indicator of changes in prey 

biomass, since prey accessibility and energy content do matter. Unexpectedly, El Niño events had 

a weak effect on stomach fullness and on the diet of chub mackerel and jack mackerel, challenging 

the paradigm of positive correlation between diversity and temperature in the NHCS. 

5.2. The oxygen minimum zone (OMZ) plays a key role and shapes 

predator – prey interactions in the NHCS   

The upwelling of the NHCS generates areas favorable for the development of primary and 

secondary producers (phytoplankton and zooplankton) that are the main source of food for other 

species in a bottom-up control system (Bertrand et al., 2008b). Living organisms tend to aggregate 

in patches. Physical forcing and organism behaviour are implicit of this patchiness The foraging 

behaviour of predators tends to reflect the patchy distribution of their prey (Bertrand et al., 2014). 

Then forage fish and other predators are concentrated where conditions of food and oxygen are 

favorable (Bertrand et al., 2014), However, for fish, oxygen might be more difficult to obtain than 

food in systems where anoxia occurs (Pauly, 2010).  In response to global warming and direct 

anthropogenic influences, OMZs of the World Ocean are expanding (Diaz and Rosenberg, 2008; 

Stramma et al., 2008). The upper limit of OMZs is rising and consequently, the vertical extent of the 

well-oxygenated surface layer shrinks, constraining the vertical habitat of epipelagic organisms. 

Intensification of oxygen-poor and acidic conditions could severely impact marine communities. 

Upwelling regions are particularly vulnerable given that they encompass the largest OMZs (Helly 

and Levin, 2004; Bertrand et al., 2010). This is particularly critical in the NHCS, which encompasses 

one of the most intense and shallow OMZ in the world (Helly and Levin, 2004; Chavez et al., 2008; 

Fuenzalida et al., 2009; Paulmier and Ruiz-Pino, 2009).  

We described in Chapter II the characteristics of the OMZ in the NHCS. The NHCS is 

characterized by the presence of one of the more intense and surface OMZ of the global ocean 

(Helly and Levin, 2004; Chavez and Messié, 2009; Paulmier and Ruiz-Pino, 2009). This OMZ is 
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very shallow and has important effects on the distribution of marine organisms, the oxycline forms 

a barrier for marine species intolerant to hypoxia (Ayón et al., 2008a; Bertrand et al., 2010) .  

Cephalopods play an important role in marine ecosystems, because they consume a wide 

variety of invertebrates and fish, and are therefore at a high trophic level in food webs (Rodhouse 

and Nigmatullin, 1996; Rosas-Luis et al., 2008). They also have high growth rates, associated with 

high daily rations and rapid digestion (Boyle and Rodhouse, 2005). In this context, it has been 

suggested that these organisms could impact drastically the populations of their main prey 

(Rodhouse and Nigmatullin, 1996). This idea becomes challenging when prey have an economic 

importance (Ibáñez, 2013). This could have been the case of jumbo squid in the NHCS, as this 

cephalopod is an active predator (Nigmatullin et al., 2001) and the Peruvian anchovy a potential 

abundant and vulnerable prey, which supports the largest fishery in the world (Pikitch et al., 

2014). But the jumbo squid unexpectedly consumed a very low percentage of anchovy. Why? 

Chapter III attempted to explain this paradox.  

We showed jumbo squid did not occupy coastal waters where a huge biomass of anchovy is 

present. Jumbo squid is adapted to anoxia since it undertakes diel vertical migration and occupies 

the oxygen minimum zone (OMZ) during the day (Gilly et al., 2006, 2012; Bazzino et al., 2010; 

Seibel, 2013). However, in the OMZ the jumbo squid adapts to hypoxia via metabolic suppression 

(Rosa and Seibel, 2008, 2010; Trübenbach et al., 2012, 2013). Although, jumbo squid can live in 

hypoxic deep waters, they need surface normoxic waters afterwards during the night. Oxygen 

concentration may thus limit the co-occurrence of jumbo squid (predator) and anchovy (prey). 

In NHCS the OMZ is much more intense and shallower than in California (Rosa and Seibel, 

2008). In this situation jumbo squid may be not permitted to come in the coastal waters where 

habit   huge biomass of anchovy. Off Peru, the abundance of jumbo squid biomass increases with 

oxygen saturation (Figure 5.2). 

With respect to jack mackerel and chub mackerel, generalized additive model (GAMs) showed 

the Z2 ml.l-1 (the depth of the 2 ml.l-1 oxygen concentration isoline, in m). The acoustic-estimated 

biomass of both species was significantly correlated to the depth of the 2 ml.l-1 oxygen 

concentration (Figure 5.1). The effect of oxygen on chub mackerel biomass (Figure 5.2 B) was 

comparable than for jack mackerel (Figure 5.2 A). Both species were more abundant when Z2 ml.l-1 

is deeper than 20 m (Bertrand unpublished Figure 5.2). Contrary to anchovy, this species it's not 

affected by very shallow oxycline (<10 m) (Bertrand et al., 2011). This behaviour in both species 
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may explain the low incidence of anchovy in the diet of jack mackerel and chub mackerel during 

cold years when oxycline was very shallow. 

 

Figure 5.1. GAM modelling approach to depth of the oxygen concentration 2 ml.l-1 isoline in m of jack 

mackerel (A) and chub mackerel (B) in relationship of acoustic-estimated biomass. Cubic spline smoother fits 

(black solid lines) of confidence intervals (dotted lines show 95% confidence limits) (Source: Bertrand 

unpublished). 

The period between the early 1970s to the mid 1990s was warmer, less productive and more 

oxygenated compared with the period from the mid 1990s (Chavez et al., 2003; Bertrand et al., 

2011). Consequently, during this period, jack and chub mackerels could distribute closer to the 

coast and anchovy prey was more accessible. The Figure 5.2 shows that the jack mackerel, chub 

mackerel and jumbo squid distribution don’t overlap with anchovy, which is very coastal. The 

OMZ play an important role in foraging behaviour and prey accessibility.  

The spatial relationship between predators and prey has important implications for landscape 

processes. The distribution of prey influences the movement of predators and has important 

consequences for the dynamics of nutrient and energy fluxes in ecosystems. Most organisms live in 

environments where food resources are distributed heterogeneously; the distribution of resources 

influences the movement of consumers across landscapes; and the spatial configuration of prey 

utilization by predators has important consequences for the dynamics of nutrient and energy 

fluxes in ecosystems (Russell et al., 1992).The prey size and predator size also are important factors 

influencing trophic interactions and foraging success in marine predators (Scharf et al., 2000). 

A B



P a g e  | 79 
Trophic ecology of jumbo squid and predatory fishes in the Northern Humboldt Current System 
 

 

Figure 5.2. Conceptual model and cross-shore profiles of oxygen and organisms distribution. The panel 

shows the mean (spline smooth) cross-shore profiles of dissolved oxygen saturation in % (grey dashed line), 

depth of the 2 ml.l-1 isoline in m (black solid line) and the acoustic-estimated biomass of anchovy (blue solid 

line), jumbo squid acoustic-estimated biomass (red solid line), jack mackerel (purple solid line) and chub 

mackerel (green solid line). Oxygen and anchovy data come from Bertrand et al. (2011), jack and chub 

mackerel data come from Bertrand (unpublished), jumbo squid data come from Alegre et al. (2014). 

5.3. Predator size, prey accessibility and shelf break matter in the 

NHCS 

In the NHCS our findings showed that the diet composition of jumbo squid (Chapter III) 

differed according to predator size. The main pattern was the steady increase of the percentage of 

cephalopods (conspecifics or not) with size. The percentage of Euphausiidae also increased 

significantly. On the contrary, the contribution of V. lucetia and Myctophum sp. decreased 

significantly while jumbo squid increased in size (Figure 3.3A). We assumed that diet changes 

were more related to prey accessibility, than specifically to jumbo squid size (Argüelles et al. 2012), 

we showed jumbo squid perform ontogenetic migration with small individuals distributed further 

offshore than larger individuals. In the Figure 3.6 we presented a comprehensive model of jumbo 

squid distribution. The small individuals are distributed during spring further offshore mainly 

where they forage on mesopelagic fishes. This pattern matches with the known distribution of 

mesopelagic fish, especially the lightfish Vinciguerria lucetia (Rosas-Luis et al., 2011). The larger 

jumbo squid located close to the coast increases their consumption of other cephalopods including 

conspecifics. Cephalopods are generally restricted in their ability to store energy. It is thus 
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assumed that cannibalism is part of a population energy storage strategy enabling cephalopod 

populations to react to adverse environmental conditions by reducing their number (Ibáñez and 

Keyl, 2009). Near the shelf break the euphausiids are present (Ballón et al., 2011) and contribute to 

the diet of the biggest jumbo squid. Lorrain et al. (2011) demonstrated with isotopes signatures 

that large individuals can significantly forage on low trophic levels. Argüelles et al. (2012) (Figure 

5.3) observed decreasing δ13C in mantle of D. gigas values with increasing distance to the shelf 

break, this results are consistent with higher δ13C values corresponding to highest productivity in 

coastal waters than in oceanic waters (Miller et al., 2008; Pennington et al., 2006). Besides, δ13C 

values also increased with organism size, and this agrees with Ruiz-Cooley et al. (2006) who found 

an increasing trend of δ13C with mantle length in D. gigas in the Gulf of California. Studies showed 

that carbon isotopic changes primarily reflect increases in body mass (Herzka, 2005). Related with 

food web, carbon differences in δ13C occur primarily at primary production, with small increases 

with increasing trophic level (0.4 %; Post, 2002). The hypothesizing that δ13C values only reflect 

changes in habitat, the increasing trend of δ13C values with ML would suggest that D. gigas might 

change of habitat while growing. Nigmatullin et al. (2001) indeed reported that if D. gigas 

seasonally migrates to coastal waters to grow, mature and feed, they could return to oceanic 

waters to spawn.  
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Figure 5.3. GAMs of muscle δ13C and δ15N values as a function of latitude, mantle length (ML) and 

distance to shelf break (DSB) (Source: Argüelles et al. 2012). 

Besides Argüelles et al. (2012) shows an overall increase in δ15N values with ML greater than 

20 cm (Figure 5.3), suggesting that there is an increase in trophic level with ontogeny for this 

species. These results agree with those of Ruiz-Cooley et al., (2010, 2006) who found a significant 

increasing trend of δ15N with mantle length. This is also associated with a very high variability of 

d15N values with mantle length. As already proposed (Lorrain et al., 2011; Ruiz-Cooley et al., 2010), 

this work suggest that this is due to highly opportunistic foraging strategies in jumbo squid. This is 

consistent with Lorrain et al., (2011) who reported the first results on jumbo squid trophic isotope 

ecology off Peru using sequential stable isotope values along the gladius of five large individuals. 

Even if the trophic level increases with squid size; this trend was not systematic. Indeed, analyzing 

the most recent part of two large individuals, the authors hypothesized that their similar proximal 

δ13C value indicated that they foraged in similar habitats, and their very different nitrogen isotopic 

values indicated feeding on distinct trophic levels (i.e. euphausiids vs. fish). This is also 
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corroborated by stomach content data that show that large and small jumbo squid forage on the 

same prey spectra and can feed from euphausiids or mesopelagic fish at any size (Figure 5.4 A and 

B). Intra-individual δ13C variations on gladius isotopic profiles were interpreted as reflecting either 

migrations or more resident periods. Flat lying (invariant) sections of the carbon isotope profiles 

are assumed to represent resident locations or spatially limited movements (i.e., habitat 1, 2, 3 on 

Figure 5.4 A and B), while sections where the δ13C profiles vary (grey symbols) represent a 

migration between habitats. With resident and migration period defined, intra-individual δ15N 

variations during resident periods (i.e., within habitats 1, 2 or 3; Figure 5.4 A and B) was 

interpreted as a change in trophic position. Variability in δ15N profiles during migrations 

(changing δ13C), however, could not be interpreted since baseline d15N variations may occur 

during squid migrations. 

 

Figure 5.4. High resolution isotopic profile along individual A gladius. δ13C (filled circles) and δ15N (filled 

diamonds) values along the length of the gladius of a 65.2 cm ML(A) and 81.2 cm ML(B)  jumbo squid. 

Grey symbols represent periods of migration, while black symbols illustrate a more fixed isotopic habitat 

(Source: Lorrain et al., 2011). 

 

A B 
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Size effect on diet composition of the jack mackerel and chub mackerel (Chapter IV) was not 

obvious. However, the sampling was heterogeneous in terms of size during the covered time 

period. For instance, jack mackerel large individuals (from 15 to 70 cm) were sampled during the 

1970s only, i.e. during the first years of the period. With global data for jack mackerel (1973-2013), 

we have observed that Copepoda is the dominant group in the small-size. The euphausiids, Zoea 

larvae and Pleuroncodes monodon, increased for medium-size individuals and the percentage of 

anchovy was important in large individuals. This diet shift with predator size has already been 

indicated by others authors (Muck and Sanchez 1987; Ermolovich and Gardina, 1994). This change 

in diet composition with fish size can be attributed to the predator’s ability to capture and handle 

the prey (Christensen, 1996; Lundvall et al., 1999).  

Interestingly, we observed an important contribution of anchovy in the diet of large jack 

mackerel (>41 cm FL) during the 1970s when the average fish size was higher (Díaz, 2013). During 

this period, large jack mackerel had access to highly energetic prey such as the Peruvian anchovy 

Engraulis ringens, because the jack mackerel could enter of coastal waters due to a deepen oxycline 

(Bertrand et al., 2011; Flores et al., 2013). However, since the late 1990s, overfishing removed these 

large jack mackerel from the system (Gerlotto et al., 2012). This could explain why high fish 

proportion in the diet was only observed in the first years of our time series, before great 

commercial fishing development (Figure 4.5D).  

Chub mackerel did not present clear pattern in the diet composition with size,. This  predator 

foraged on small zooplankton (Copepoda) at all size class. This pattern was already mentioned by 

Konchina (1982) but not by Muck and Sanchez (1987). In this study the zooplankton contribution 

was even greater in chub mackerel, while small chub mackerel could paradoxically consume more 

fishes than large chub mackerel (Figures 4.5A, 4.11). Castro, (1993)mentioned the chub mackerel 

juvenile foraged mainly fishes (42%) in Canarias. 

 In summary, we indicated that individual size is strongly linked to ontogenetic migration for 

jumbo squid. Whereas continental shelf constitutes an important biogeographic barrier (Bakun, 

1996; Genin, 2004; Zhu et al., 2009) for feeding jack mackerel and chub mackerel. The contribution 

of prey is higher in the border of the shelf break, especially the euphausiids (Figure 4.5). These 

results are in agreement with the proposal by Ballón et al., (2011), who showed the 

macrozooplankton biomass increase over the continental shelf break.  
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The latitudinal pattern trend seems more related to the geography of the Peruvian coast than 

to genuine latitudinal effects. We hypothesized that the lack of effect was explained by the 

geomorphology of the coast and the width of the continental shelf. There is a trend for euphausiids 

that dominated in the north part (3º-10ºS) and decreased to the south where the continental shelf is 

wide. On the contrary, the squat lobster Pleuroncodes monodon increased in the diet with the 

latitude southward where the continental shelf is narrow. Gutiérrez et al. (2008) indicates that the 

squat lobster is distributed mainly in high latitudes in the Peruvian coast (between 9-12ºS). 

5.4. The overlap between jumbo squid and Vinciguerria lucetia 

With the results of this work, we know that changes in prey composition according to squid 

size and spatiotemporal features were more related to prey accessibility rather than to 

specific/size-related preferences.  

Jumbo squid perform ontogenetic migration with small individuals distributed far from the 

coast than larger jumbo squid (Arguelles et al., 2001). Prey composition in the stomach contents 

matches this distribution, mesopelagic fish (V. lucetia and myctophiids) recovered mainly in the 

small jumbo squids stomachs, confirmed the structuring role of spatial matching in the jumbo 

squid-prey interactions, because small jumbo squids consumed more mesopelagic fish than larger 

individuals. This prey group contributed more during spring and far from the coast, when jumbo 

squid was more offshore.  

This pattern is in accordance with our results in Rosas-Luis et al. (2011). We worked with 

acoustic surveys for assessing the biomass and distribution of the jumbo squid and the 

mesopelagic fish V. lucetia that were carried out in the Northern Humboldt Current System in 2007 

and 2008. Besides, 937 stomach contents of jumbo squid were analyzed. In this work the main 

group in the diet of the jumbo squid was mesopelagic fish and inside this group, the principal prey 

was V. lucetia. The acoustic biomass estimates made for D. gigas and V. lucetia are considered 

realistic, however, in order to correctly estimate biomass the values obtained with the acoustic 

method can be contrasted with net trawls, in which the collected organisms are identified and 

analyzed. This method provides a tool for verifying the fish composition in the water column 

(Cornejo and Koppelmann, 2006). 

With the acoustic method, we detected D. gigas and V. lucetia form aggregations, supported 

the hypothesis of a strong relationship between these two species, which is reflected in the jumbo 

squid’s feeding activity and the vertical migrations shown in the echograms. Trophic relationships 
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between D. gigas and V. lucetia are evident during the day and night and D. gigas probably feeds 

on V. lucetia in deeper waters. Alarcón et al. (2004) carried out experimental fishing with 

semipelagic trawls for lightfish and recorded large catches of jumbo squid. The acoustic biomass 

estimates and echogram signals of D. gigas and V. lucetia in the water column suggest a close 

relationship between prey and predator, as the estimated distribution of jumbo squid near and 

offshore the continental shelf break overlapped with that of V lucetia. Similar pattern is reflected in 

the stomach content analysis of the squid, in which V. lucetia was the main component. Evidently, 

jumbo squid prey on other species, which were present in the stomach contents at the same time as 

V. lucetia. However, their abundance in the ecosystem is probably lower than that of V. lucetia. 

Moreover that V. lucetia and D. gigas migrate to deeper waters during the day (migratory 

behaviour: Gilly et al., 2006; Markaida et al., 2005) and it is the factor that determines the 

dominance of V. lucetia in the squid’s stomach contents. 

The acoustic biomass estimates show that there is a relation between the two species, the 

importance of V. lucetia lies in its ability to support jumbo squid predation, this is a species with 

dynamic development that promotes rapid population growth, which is reflected in a high 

abundance and wide distribution in the ocean (Ahlstrom et al., 1976). These characteristics are 

evident in V. lucetia, one of the most important fishes in the Northern Humboldt Current System. It 

is found between 5º and 18ºS and can dominate the total catch in up to 68% of scientific cruises 

(Cornejo and Koppelmann, 2006). Based on the stomach content analysis of D. gigas and the 

acoustic detection we can infer that V. lucetia was the main component of the jumbo squid’s diet in 

2007 and 2008 in the Humboldt Current System off Peru. When there is a high biomass of V. 

lucetia, D. gigas has been observed to focus its feeding on this species (Table 5.1) (Rosas-Luis et al. 

2011). 

Table 5.1. Acoustic biomass estimation of jumbo squid and V. lucetia, and estimated consumption of V. 

lucetia by D. gigas between 2007 and 2008. Q/B of jumbo squid= 5.8, taken from Alarcón-Muñoz et al. 

(2008) (Source: Rosas-Luis et al. 2011). 

Fishing 
cruiser 

prospecting 
DCij 

Hydroacoustic 
biomass           

D. gigas (t) 

D.gigas 
predation on 
V. lucetia (t) 

Hydroacoustic 
biomass               

V. lucetia (t) 

Estimation of 
predation by D. gigas 

on V. lucetia (%) 

2007 02-04 0.09 1231713.3 625390.1 5948499.9 10.51 

2008 05-07 0.15 717086.8 570084.0 2445635.2 23.31 

2008 11-12 0.59 154047.0 481704.9 8317821.4 5.79 
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5.5. Long-term diet data of fish predators provide information on 

temporal changes of the forage fauna in the NHCS   

The analyses of the diet of jack mackerel between 1973 and 2013 (Chapter IV) highlighted the 

occurrence of at least two temporal scenarios in the NHCS: (1) from 1973 to around 2000, a period 

with strong dominance of euphausiids; (2) after 2000 the squat lobster P. monodon and Zoea larvae 

increased in the diet, while the occurrence and abundance of Engraulidae in stomachs was 

moderate (Alegre et al., 2013, 2015). Temporal patterns for chub mackerel were blurred because 

data were missing for several years. For jack mackerel these scenarios matched with warm and 

cold periods proposed by Chavez et al. (2003, 2008). The increase of P. monodon in the diet was in 

concordance with the abundance of this prey along the Peruvian coast since the mid-1990s, and 

particularly after the El Niño in 1997– 1998 (Gutiérrez et al., 2008). Even before this surge in 

abundance, Elliot and Paredes (1996) reported great biomass of P. monodon in the south of Peru in 

late 1995. Furthermore, the dominance of euphausiids in the jack mackerel diet increased from the 

late 1970 to the late 1990s and dropped after. This trend is contradictory with the trend in 

euphausiids abundance off Peru (Ayón et al., 2011) that presented lower biomasses in the late 

1970-1990s and increased then after.  

Therefore the following paradox appears: if jack mackerel and chub mackerel are 

opportunistic foragers (Konchina et al. 1981; Konchina, 1982; Muck & Sanchez 1987; in this study), 

changes in their diet should indicate changes in the species assemblage of the ecosystem. In 

Chapter IV we indicated that changes in prey contribution actually correspond to observed 

changes in the ecosystem in the case of P. monodon but not in the case of Euphausiidae. The 

explanation we propose for this paradox is that the P. monodon is an "easy” prey to get. They 

congregated in dense patches within a thin surface layer above the oxycline (Bertrand et al., 2011, 

2014). In addition, they are accessible during the complete diel cycle (i.e., day and night) while 

most Euphausiidae perform diel vertical migration, and are therefore inaccessible during the day 

(Ballón et al., 2011). Besides P. monodon has a high nutritional content (Gutierrez, 2002). Aurioles-

Gamboa et al. (2004) showed that the fatty acid composition of a close species, P. planipes, 

depended of the available food quality. In the highly productive NHCS, P. monodon is no food 

limited and has high protein and fatty acid content (Gutierrez, 2002). A close pattern occurred with 

the diet data of chub mackerel. However, many years were missing, which did not allow us to 

draw conclusions about temporal changes in the diet of this species. Our results refuted the use of 

opportunistic foragers as real indicators of ecosystem changes. Indeed the decadal changes in JM 
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diet point out that the foraging behaviour depends on prey abundance but also on prey 

accessibility and the prey energetic content.  

The NHCS is a region particularly affected by El Niño southern oscillation (Chavez et al. 

2008). Exceptional El Niño events, such as those that occurred in 1982-83 and 1997-98, affect all 

marine ecosystems components (Barber and Chavez 1983; Arntz and Tarazona 1990; Fiedler 2002) 

including jack mackerel and chub mackerel populations (Arcos et al., 2001; Bertrand et al., 2004b; 

Gerlotto et al., 2012). The paradox is that, contrary to previous studies (Muck and Sanchez 1987; 

Sánchez de Benites and Muck, 1987), prey diversity was significantly lower during El Niño 

(Chapter IV). We did not detect strong differences in diet composition between El Niño, La Niña 

and neutral periods (Figure 4.9). Comparable results were observed on anchovy diet (Espinoza 

and Bertrand, 2008). The reason for such a weak effect of ENSO events on pelagic fish trophic 

ecology is puzzling. Euphausidae are the main prey group for pelagic fishes (this study, Espinoza 

and Bertrand, 2008; Espinoza et al., 2009). Their occurrence and abundance seem highly resilient to 

El Niño events (Brinton 1967; Ballón et al., 2008; Aronés et al., 2009). 

5.6. Patterns of prey diversity 

The selection of food is an important factor to consider in the dynamics of fish stocks, because 

stocks production probably depending on the type, quality and abundance of prey (Ursin, 1979). 

However, one must consider prey size, prey composition and prey abundance in the diet as well as 

prey availability in the environment. 

We obtained unexpected results in this work when studying the prey richness in the jumbo 

squid diet (Chapter III). The results of multinomial model indicate that jumbo squid fullness 

increased with the number of prey taxa. This result has an opposite pattern than expected. We 

therefore question the usual hypothesis that top predators can seek locally dense aggregations of 

monospecific prey. For example tuna forage on dense and monospecific prey aggregations, they 

can feed on this concentration until satiation (Bard et al., 2002; Bertrand et al., 2002; Ménard and 

Marchal, 2003; Potier et al., 2008). On the contrary, when prey are scattered (Auster et al., 1992), 

tunas forage on a higher diversity of prey but with a lesser efficiency (Potier et al., 2007). 

The comparison of the diet of both jack and chub mackerels (Chapter IV) investigated using 

Multivariate Regression Tree analysis CART (Figure 4.11) argues that there are significant 

differences in the diet of these two pelagic fishes. Although both species are preferably 

zooplanktophagus, it should be noted more proportion of fish in the diet of chub mackerel. There 
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are anatomical differences in the mouthparts of both species, which would differentiate the type of 

diet.  The jack mackerel, has protrusible mouth, during feeding shoots their lips to suck the prey 

(Mapukata, 2002). The type of the mouth in adult chub mackerel is a transitional form between the 

types of fish “planktophagous” and “ichtyophagus” but closer to the latter type. The pharyngeal 

plates are provided with sharp teeth and directed into the esophagus; its function is to retain the 

prey caught in the mouth and further contribute to the mechanism of swallowing food (Angelescu, 

1980). Then, chub mackerel feed by filtering small particles from suspension and besides engulfing 

large individually prey (O’Connell and Zweifel, 1972) and jack mackerel used only particulate feed 

(Mapukata, 2002). In this work we found a highest proportion of fish in chub mackerel diet, than 

jack mackerel. This finding also contradicts the work of Medina and Arancibia (1998), who found 

that jack mackerel selects prey 11.8 times larger than prey of chub mackerel, in relation with 

predator bodyweight. The explanation of this paradox in the NHCS could be based on the 

occupation of space in both species. The chub mackerel inhabits most coastal areas and have more 

access to the anchovy and their larvae, the jack mackerel inhabits the ocean areas for their 

sensitivity to the shallow OMZ. But in the oceanic area there are huge amounts of mesopelagics, 

especially V. lucetia (Cornejo and Koppelmann, 2006); and our results indicate that jack mackerel 

consume low amounts of mesopelagic, contrary to what was found for Chilean waters (Medina 

and Arancibia, 1992, 1998, 2002).  

5.7. Concluding remarks and perspectives 

This study provided a new vision of the trophic ecology of the main predators in the NHCS. 

Several paradoxes were deciphered (e.g. the jumbo squid - anchovy - Oxygen) and some surprises 

came out (e.g. the preference of jack and chub mackerel over squat lobster than Euphausiidae). 

This work that is based on a considerable number of stomach samples and with great 

spatiotemporal coverage, allowed us to understand the feeding behavior of important resources in 

the NHCS. In many cases the diet could indicate spatio-temporal changes in the environment. 

However, we cannot infer entirely on the presence of organisms in the environment through the 

analyses of stomach contents of predators. Other processes inherent to predators such as 

livelihood strategies, competition and opportunism need to be considered. The global patterns that 

we described in this work, illustrate the opportunistic foraging behaviour, life strategies and the 

high degree of plasticity of these species. Such behavior allows adaptation to changes in the 

environment. 



P a g e  | 89 
Trophic ecology of jumbo squid and predatory fishes in the Northern Humboldt Current System 
 

The main limitation of this study was the inability to work with more environmental 

variables, particularly physicochemical variables. This problem resided mainly in the amount of 

biological information that is handled in this study and the lack of time to also handle other 

environmental time series. Therefore, further studies should take into account more environmental 

variables to better understand the feeding behavior of these species. In addition, the 

methodological framework developed during this work should be applied to other important 

species such as Bonito, Dolphin fish and Tuna, allowing us to complement the picture of the 

feeding behavior of the main resources of NHCS spatially and of the food supply. Finally, our 

findings should help to improve monitoring protocols by applying methods of minimum sample 

size in order to have balanced sampling scheme in time and space.  

Besides, the highly variability in time and space of predators’ diet shows that trophic models 

with fixed diet (e.g. Ecopath) can have major drawbacks. In the NHCS, trophic models should 

definitively consider adaptive trophic behaviours, and we propose to work with people who 

developed a Humboldt version of the OSMOSE End-to-End model (Oliveros, 2014) to develop a 

reliable model of oceanic ecosystem in Peru. 
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Appendix A 

Chapter III 

 

Figure A3.1. Distribution frequency of jumbo squid maturity stages (I: immature; II: in maturing; 

III: mature; and IV: spawning) according to mantle size. 

 

Figure A3.2. Distribution of the fullness weight index (FWI) of non-empty jumbo squid stomach. 
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Table A3.1. Overall description of the 55 prey taxa observed in jumbo squid stomach sampled off 

Peru during 2004–2011. Are indicated, the taxonomic information, the mean value (±standard 

deviation) of the proportion by weight (%Weight) and by number (%Number) as well as the 

frequency of occurrence (%Occurrence). 

 

 

 

 

 

 

 

 

 

Phylum Class Order Family Species Dietary groups % Weight % Number % Occurrence  

Mollusca Gastropoda Thecosomata Cavoliniidae Cavolinia uncinata Other 0.07 (± 2.16) 0.19 (± 3.49) 0.44 
        Diacria spp. Other 1.03 (± 9.13) 2.39 (± 13.17) 4.56 
      Thecosomata n/i   Other 0.00 (± 0.01) 0.03 (± 1.02) 0.08 
    Littorinimorpha Atlantidae Atlanta spp.  Other 0.00 (± 0.02) 0.11 (± 1.38) 1.08 
      Naticidae Natica spp. Other 0.01 (± 0.83) 0.18 (± 2.37) 1.44 
    Gastropoda n/i     Other 0.00 (± 0.05) 0.03 (± 0.91) 0.19 
  Bivalvia Solemyoida larvae     Other 0.00 (± 0.00) 0.01 (± 0.36) 0.17 
  Cephalopoda Octopoda Argonautidae Argonauta sp. Other Cephalopoda 1.21 (± 10.25) 1.06 (± 8.41) 2.65 
    Myopsida Loliginidae   Other Cephalopoda 0.21 (± 4.47) 0.21 (± 4.45) 0.25 
    Oegopsida Enoploteuthidae Abraliopsis affinis Other Cephalopoda 3.65 (± 17.51) 3.19 (± 15.49) 6.63 
      Ommastrephidae  Dosidicus gigas Dosidicus gigas 8.57 (± 25.49) 3.41 (± 11.69) 13.21 
    Paralarve of Cephalopoda     Other Cephalopoda 0.00 (± 0.01) 0.00 (± 0.12) 0.03 
    Eggs of Cephalopoda     Other Cephalopoda 0.03 (± 1.66) 0.03 (± 1.66) 0.03 
    Cephalopods n/i     Other Cephalopoda 26.11 (± 42.21) 21.95 (± 37.72) 35.74 
Arthropoda Crustacea n/i       Other 0.37 (± 5.67) 0.44 (± 5.87) 0.72 
  Maxillopoda Calanoida   Aetididae Aetideus sp. Other 0.00 (± 0.00) 0.00 (± 0.18) 0.03 
      Oncaeidae Oncaea sp. Other 0.00 (± 0.00) 0.02 (± 0.81) 0.11 
      Calanoida n/i   Other 0.00 (± 0.06) 0.02 (± 0.99) 0.03 
  Ostracoda       Other 0.01 (± 0.45) 0.03 (± 1.50) 0.08 
  Malacostraca Amphipoda Gammaridea   Other 0.06 (± 2.33) 0.08 (± 2.63) 0.11 
      Amphipoda n/i   Other 0.00 (± 0.02) 0.01 (± 0.55) 0.03 

    Decapoda  Galatheidae Pleuroncodes monodon 
Pleuroncodes 
monodon 1.66 (± 12.36) 1.74 (± 12.47) 2.29 

      Euphausiidae   Euphausiidae 6.44 (± 23.63) 7.75 (± 26.25) 8.26 
      Zoea larvae   Other 0.08 (± 2.42) 0.09 (± 2.60 0.17 
      Decapods n/i   Other 0.03 (± 1.66) 0.06 (± 1.48) 0.25 
    Stomatopoda  Squillidae Squilla panamensis Other 0.14 (± 3.61) 0.24 (± 4.27) 0.41 
      Stomatopods n/i   Other 0.05 (± 1.87) 0.09 (± 2.33) 0.19 
Teleosteii Actinopterygii Stomiiformes Phosichthyidae Vinciguerria lucetia Vinciguerria lucetia 19.68 (± 37.64) 24.43 (± 37.64) 35.90 
    Osmeriformes Bathylagidae Leuroglossus sp. Teleosteii 0.26 (± 4.39) 0.48 (± 4.72) 1.91 
      Argentinidae Argentina sp. Teleosteii 0.00 (± 0.00) 0.00 (± 0.21) 0.03 
    Myctophiformes Myctophidae Benthosema panamense Other Myctophidae 0.00 (± 0.00) 0.01 (± 0.83) 0.03 
        Diogenichthys laternatus Other Myctophidae 2.50 (± 14.25) 3.62 (± 15.78) 7.79 
        Lampanyctus sp. Lampanyctus sp. 4.58 (± 19.57) 5.13 (± 17.76) 13.57 
        Myctophum aurolaternatum Myctophum spp. 1.40 (± 11.07) 1.01 (± 7.94) 2.76 
        Myctophum nitidulum Myctophum spp. 1.21 (± 10.20) 1.25 (± 9.49) 2.87 
        Myctophum sp. Myctophum spp. 1.00 (± 9.25) 1.26 (± 9.10) 3.40 
        Myctophids n/i Other Myctophidae 4.47 (± 19.57) 6.06 (± 19.75) 14.10 
    Perciformes Sphyraenidae Sphyraena spp. Teleosteii 0.70 (± 8.04) 0.52 (± 5.50) 1.60 
      Nomeidae Cubiceps spp. Teleosteii 1.85 (± 12.60) 1.28 (± 9.55) 2.76 
        Psenes sio Teleosteii 0.30 (± 5.31) 0.34 (± 5.00) 0.75 
      Carangidae Trachurus murphyi Teleosteii 0.22 (± 4.43) 0.15 (± 3.40) 0.28 
      Scombridae Scombrids n/i Teleosteii 0.03 (± 1.66) 0.01 (± 0.83) 0.03 
    Gadiformes Moridae Physiculus spp. Teleosteii 0.03 (± 1.62) 0.00 (± 0.22) 0.03 
      Macrouridae Macrourids n/i Teleosteii 0.15 (± 3.70) 0.05 (± 1.60) 0.19 
      Merlucciidae Merluccius gayi peruanus Teleosteii 0.14 (± 3.59) 0.07 (± 2.19) 0.19 
    Clupeiformes Engraulidae Engraulis ringens Engraulidae 1.91 (± 12.95) 1.39 (± 10.17) 2.63 
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Table A3.2. Yearly description of the 55 prey taxa observed in jumbo squid stomach sampled off 

Peru during 2004–2011. Proportion by weight: %W; proportion by number: %N; frequency of 

occurrence: %O. 

 

Table A3.3. Result of the Kruskal-Wallis test performed on the 11 dietary groups according to Size, 

Distance to the shelf-break, Season and SSTA. Significant differences are in bold. 

 

 

 

 

          2004 2005 2006 2007 2008 2009 2010 2011 
Phylum Class Order Family Species %W %N %O %W %N %O %W %N %O %W %N %O %W %N %O %W %N %O %W %N %O %W %N %O 
Mollusca Gastropoda Thecosomata Cavoliniidae Cavolinia uncinata 0.00 0.00 0.00 0.85 1.41 4.02 0.12 0.76 1.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
        Diacria spp. 4.16 8.71 13.46 0.00 0.00 0.00 0.34 0.89 1.25 0.43 0.73 0.84 0.24 0.47 2.21 1.01 2.40 4.46 0.64 1.33 3.63 0.25 2.22 6.55 
      Thecosomata n/i   0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
    Littorinimorpha Atlantidae Atlanta spp.  0.01 0.52 5.00 0.00 0.00 0.00 0.00 0.10 1.25 0.00 0.11 0.84 0.00 0.00 0.00 0.00 0.05 0.27 0.00 0.02 0.38 0.00 0.01 0.28 
      Naticidae Natica spp. 0.10 0.51 2.88 0.00 0.24 1.34 0.00 0.32 2.71 0.00 0.05 0.84 0.00 0.05 0.92 0.00 0.14 1.49 0.00 0.02 0.19 0.00 0.04 0.57 
    Gastropoda n/i     0.00 0.03 0.19 0.00 0.00 0.00 0.00 0.01 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.18 0.96 0.00 0.00 0.00 
  Bivalvia Solemyoida larvae     0.00 0.03 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.41 0.00 0.00 0.00 0.00 0.04 0.28 
  Cephalopoda Octopoda Argonautidae Argonauta sp. 1.75 1.49 2.69 4.61 2.24 7.59 0.00 0.00 0.00 0.00 0.00 0.00 0.37 0.36 0.74 2.27 1.95 3.92 0.65 0.82 2.49 0.59 1.36 5.41 
    Myopsida Loliginidae   1.43 1.41 1.54 0.10 0.11 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
    Oegopsida Enoploteuthidae Abraliopsis affinis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.17 0.98 3.87 5.59 4.58 10.27 11.15 9.60 17.97 7.44 7.40 13.96 
      Ommastrephidae  Dosidicus gigas 10.67 4.22 15.96 11.13 3.79 14.73 7.60 2.75 11.48 22.68 8.53 31.80 5.84 2.22 11.07 7.48 3.65 11.89 8.02 2.93 12.05 2.87 1.39 5.70 
    Paralarve of Cephalopoda     0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.28 
    Eggs of Cephalopoda     0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.28 0.28 
    Cephalopods n/i     20.06 16.38 35.58 16.09 11.88 29.46 24.98 21.90 35.49 19.47 17.81 30.13 21.97 19.26 29.34 33.33 27.42 40.54 29.06 25.26 34.61 34.31 27.18 45.58 
Arthropoda Crustacea n/i       0.79 1.03 1.92 0.45 0.52 1.34 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.45 0.74 0.40 0.34 0.41 0.71 0.82 1.15 0.00 0.00 0.00 
  Maxillopoda Calanoida   Aetididae Aetideus sp. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.19 0.00 0.00 0.00 
      Oncaeidae Oncaea sp. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.76 0.00 0.00 0.00 
      Calanoida n/i   0.00 0.00 0.00 0.01 0.27 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
  Ostracoda       0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.18 0.38 0.00 0.01 0.28 
  Malacostraca Amphipoda Gammaridea   0.19 0.35 0.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.18 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
      Amphipoda n/i   0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.28 
    Decapoda  Galatheidae Pleuroncodes monodon 0.01 0.10 0.38 3.58 3.77 4.02 0.00 0.05 0.21 0.00 0.00 0.00 3.80 3.50 4.98 1.07 1.30 1.76 1.92 2.25 2.68 3.81 3.78 4.84 
      Euphausiidae   10.49 12.71 13.27 2.51 4.29 4.46 7.64 8.76 9.19 5.04 6.10 6.28 9.32 11.14 12.18 6.03 7.10 7.70 4.14 4.95 5.16 2.14 2.71 3.13 
      Zoea larvae   0.00 0.00 0.00 0.15 0.33 0.89 0.51 0.53 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
      Decapods n/i   0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.31 1.22 0.00 0.00 0.00 0.00 0.00 0.00 
    Stomatopoda  Squillidae Squilla panamensis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.69 1.19 2.03 0.00 0.00 0.00 0.00 0.00 0.00 
      Stomatopods n/i   0.02 0.07 0.38 0.00 0.22 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.15 0.37 0.20 0.20 0.27 0.00 0.00 0.00 0.00 0.00 0.00 
Teleosteii Actinopterygii Stomiiformes Phosichthyidae Vinciguerria lucetia 19.16 20.32 35.58 18.92 23.50 46.88 27.82 31.95 44.05 14.84 21.93 31.38 27.61 31.22 41.88 13.57 17.88 26.49 17.70 26.40 35.18 16.74 22.95 33.05 
    Osmeriformes Bathylagidae Leuroglossus sp. 0.19 0.14 0.38 0.43 0.24 0.89 0.02 0.24 1.67 0.69 0.85 2.09 0.24 0.70 3.69 0.34 0.46 1.89 0.10 0.54 1.53 0.34 0.78 2.85 
      Argentinidae Argentina sp. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.19 0.00 0.00 0.00 
    Myctophiformes Myctophidae Benthosema panamense 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.19 0.00 0.00 0.00 
        Diogenichthys laternatus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.50 6.59 15.31 4.17 5.65 9.86 4.29 6.10 12.81 3.60 6.13 16.81 
        Lampanyctus sp. 2.13 3.50 11.92 6.25 7.62 25.00 8.06 8.06 20.88 8.60 11.12 18.41 3.85 3.73 13.10 5.10 5.58 12.16 3.36 3.32 8.03 1.47 1.84 7.41 
        Myctophum aurolaternatum 0.19 0.23 2.12 0.75 0.81 1.34 0.01 0.10 0.21 0.00 0.00 0.00 0.00 0.05 0.74 0.89 0.73 1.76 3.70 2.02 5.74 6.24 4.83 10.83 
        Myctophum nitidulum 0.16 0.17 0.96 0.94 1.92 4.91 2.43 2.18 4.38 4.22 4.94 5.86 0.91 0.94 2.58 0.23 0.38 1.08 2.04 1.65 4.59 0.53 0.36 1.99 
        Myctophum sp. 3.31 4.36 13.27 0.86 2.07 7.59 1.61 1.94 3.34 0.00 0.17 0.42 0.00 0.00 0.00 0.27 0.28 0.54 0.00 0.00 0.00 2.07 1.83 4.56 
        Myctophids n/i 4.83 6.82 20.77 6.34 9.92 25.45 4.63 6.31 21.29 9.40 13.58 23.01 2.30 3.02 7.38 6.16 7.61 12.43 2.34 2.93 7.46 2.16 3.10 4.84 
    Perciformes Sphyraenidae Sphyraena spp. 0.35 0.41 1.92 1.27 0.76 3.57 0.74 0.48 1.67 0.42 0.47 1.67 0.74 0.55 0.92 0.40 0.20 0.41 0.95 0.71 2.29 1.19 0.92 2.28 
      Nomeidae Cubiceps spp. 0.00 0.00 0.00 1.82 0.54 2.23 1.35 0.49 2.51 1.62 1.96 4.18 2.17 1.71 2.77 1.18 0.78 1.62 1.47 1.23 3.25 6.94 4.76 8.26 
        Psenes sio 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.73 0.81 2.16 0.63 0.80 1.72 0.57 0.57 0.57 
      Carangidae Trachurus murphyi 0.00 0.00 0.00 0.00 0.00 0.00 0.94 0.63 1.04 0.00 0.00 0.00 0.61 0.48 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
      Scombridae Scombrids n/i 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.07 0.14 0.00 0.00 0.00 0.00 0.00 0.00 
    Gadiformes Moridae Physiculus spp. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.02 0.14 0.00 0.00 0.00 0.00 0.00 0.00 
      Macrouridae Macrourids n/i 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.03 0.37 1.34 0.00 0.00 0.00 
      Merlucciidae Merluccius gayi peruanus 0.27 0.29 0.38 0.00 0.00 0.00 0.21 0.01 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.52 0.21 0.76 0.00 0.00 0.00 
    Clupeiformes Engraulidae Engraulis ringens 0.69 0.34 1.54 3.70 2.36 6.70 0.41 0.26 0.42 5.19 4.07 6.69 5.11 3.64 6.46 1.53 1.29 2.03 0.19 0.10 0.19 0.80 0.66 0.85 
        Engraulids n/i 0.67 0.67 1.92 4.38 3.65 5.36 0.77 0.66 1.25 0.75 0.84 1.26 0.74 0.72 1.11 0.35 0.35 1.08 0.20 0.11 0.57 0.28 0.28 0.28 
    Pleuronectiformes Cynoglossidae Cynoglossids n/i 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.22 1.14 
    Syngnathiformes Syngnathidae Hippocampus sp. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.19 0.00 0.00 0.00 
        Syngnathids n/i 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.52 0.76 0.00 0.00 0.00 
    Beloniformes Exocoetidae Exocoetus spp. 0.15 0.16 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
  Teleosteii n/i       18.20 15.06 28.27 14.85 17.55 33.93 9.74 10.39 15.66 6.61 6.34 10.88 7.91 7.83 13.47 6.59 7.25 12.03 4.51 4.31 6.31 4.82 4.20 9.69 
  Eggs of Teleosteii n/i       0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.42 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Urochordata     Salpidae   0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 
Algae     Laminariaceae   0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.05 0.21 0.00 0.00 0.00 0.16 0.04 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

  Size (df=3) Distance to the shelf (df=3) Season (df=3) SSTA (df=3) 
Dietary  group H p-value H p-value H p-value H p-value 
Dosidicus gigas 55.78 <0.001 2.78 0.42 3.31 0.35 30.21 <0.001 
Others Cephalopoda 66.12 <0.001 12.92 0.01 21.47 <0.001 28.52 <0.001 
Euphausiidae 73.26 <0.001 8.69 0.03 45.86 <0.001 75.1 <0.001 
Pleuroncodes monodon 4.73 0.19 10.67 0.01 7.47 0.06 44.79 <0.001 
Vinciguerria lucetia 140.42 <0.001 46.09 <0.001 163.19 <0.001 78.52 <0.001 
Lampanyctus sp. 41.16 <0.001 4.92 0.18 37.78 <0.001 18.41 <0.001 
Myctophidae 32.61 <0.001 11.09 0.01 36.55 <0.001 24.99 <0.001 
Myctophum spp. 57.89 <0.001 34.09 <0.001 31.78 <0.001 43.97 <0.001 
Engraulidae 4.56 0.21 29.89 <0.001 37.62 <0.001 15.92 <0.001 
Teleosteii 6.77 0.08 7.01 0.07 5.33 p<0.001 2.57 0.46 
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