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A behavioral ecology of fishermen: hidden stories

from trajectory data in the Northern Humboldt

Current System
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Abstract

This work proposes an original contribution to the understanding of fishermen spatial be-

havior, based on the behavioral ecology and movement ecology paradigms. Through the

analysis of Vessel Monitoring System (VMS) data, we characterized the spatial behavior

of Peruvian anchovy fishermen at different scales: (1) the behavioral modes within fish-

ing trips (i.e., searching, fishing and cruising); (2) the behavioral patterns among fishing

trips; (3) the behavioral patterns by fishing season conditioned by ecosystem scenarios;

and (4) the computation of maps of anchovy presence proxy from the spatial patterns of

behavioral mode positions. At the first scale considered, we compared several Markovian

(hidden Markov and semi-Markov models) and discriminative models (random forests,

support vector machines and artificial neural networks) for inferring the behavioral modes

associated with VMS tracks. The models were trained under a supervised setting and

validated using tracks for which behavioral modes were known (from on-board observers

records). Hidden semi-Markov models performed better, and were retained for inferring

the behavioral modes on the entire VMS dataset. At the second scale considered, each

fishing trip was characterized by several features, including the time spent within each

behavioral mode. Using a clustering analysis, fishing trip patterns were classified into

groups associated to management zones, fleet segments and skippers’ personalities. At

the third scale considered, we analyzed how ecological conditions shaped fishermen behav-

ior. By means of co-inertia analyses, we found significant associations between fishermen,

anchovy and environmental spatial dynamics, and fishermen behavioral responses were

characterized according to contrasted environmental scenarios. At the fourth scale consid-

ered, we investigated whether the spatial behavior of fishermen reflected to some extent

the spatial distribution of anchovy. Finally, this work provides a wider view of fishermen

behavior: fishermen are not only economic agents, but they are also foragers, constrained

by ecosystem variability. To conclude, we discuss how these findings may be of importance

for fisheries management, collective behavior analyses and end-to-end models.

Key words: vessel monitoring system; tracking data; foraging movement; hidden

semi-Markov models; model validation; anchoveta Engraulis ringens
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Résumé

Ce travail propose une contribution originale à la compréhension du comportement spatial

des pêcheurs, basée sur les paradigmes de lécologie comportementale et de l’écologie du

mouvement. En s’appuyant sur des données du ‘Vessel Monitoring System’, nous étudions

le comportement des pêcheurs d’anchois du Pérou à des échelles différentes: (1) les modes

comportementaux (c-à-d. recherche, pêche et route) au sein des marées (sorties de pêche),

(2) les patrons comportementaux parmi les marées, (3) les patrons comportementaux par

saison de pêche conditionnés par des scénarios écosystémiques et (4) les patrons spatiaux

des positions de modes comportementaux, que nous utilisons pour la création de cartes

de probabilité de présence d’anchois. Pour la première échelle, nous comparons plusieurs

modèles Markoviens (modèles de Markov et semi-Markov cachés) et discriminatifs (forêts

aléatoires, machines à vecteurs de support et réseaux de neurones artificiels) pour inférer

les modes comportementaux associés aux trajectoires VMS. L’utilisation d’un ensemble

de données pour lesquelles les modes comportementaux sont connus (grâce aux données

collectées par des observateurs embarqués), nous permet d’entrâıner les modèles dans

un cadre supervisé et de les valider. Les modèles de semi-Markov cachés sont les plus

performants, et sont retenus pour inférer les modes comportementaux sur l’ensemble de

données VMS. Pour la deuxième échelle, nous caractérisons chaque marée par plusieurs

descripteurs, y compris le temps passé dans chaque mode comportemental. En utilisant

une analyse de classification hiérarchique, les patrons des marées sont classées en groupes

associés à des zones de gestion, aux segments de la flottille et aux personnalités des cap-

itaines. Pour la troisième échelle, nous analysons comment les conditions écologiques

donnent forme au comportement des pêcheurs à l’échelle d’une saison de pêche. Via des

analyses de coinertie, nous trouvons des associations significatives entre les dynamiques

spatiales des pêcheurs, des anchois et de l’environnement, et nous caractérisons la réponse

comportementale des pêcheurs selon des scénarios environnementaux contrastés. Pour la

quatrième échelle, nous étudions si le comportement spatial des pêcheurs reflète dans une

certaine mesure la répartition spatiale de l’anchois. Nous construisons un indicateur de

la présence d’anchois à l’aide des modes comportementaux géo-référencés inférés à partir

des données VMS. Ce travail propose enfin une vision plus large du comportement de

pêcheurs: les pêcheurs ne sont pas seulement des agents économiques, ils sont aussi des

fourrageurs, conditionnés par la variabilité dans l’écosystème. Pour conclure, nous dis-

cutons de la façon dont ces résultats peuvent avoir de l’importance pour la gestion de la

pêche, des analyses de comportement collectif et des modèles end-to-end.

Mots clés: système de suivi des bateaux; données de suivi; mouvement des forageurs;

modèles de semi-Markov cachés; validation des modelès; anchoveta Engraulis ringens
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Roger, David, Francisco and of course, Sophie and Ronan. I never thought I would



ix

say this, but I really enjoyed and had a lot of fun during the defense. Thank you

for reading the PhD manuscript and for your questions. It would be a pleasure to

continue the discussions that we started that day.

I also want to thank the students I got the pleasure to meet at Télécom-Bretagne,
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Jaap, Stéphanie, Roger, David, Francisco y por supuesto, Sophie y Ronan. Nunca



xv
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drea, Claude, Kim, Belia, Claudia y Arturo. Estoy muy feliz de haber conocido

tan buenos amigos. También quiero agradecer a Pierre e Irène. Ha sido un gran

placer conocerles – el amor que se tienen me conmueve profundamente. Estoy muy

agradecida por la forma en que me abrieron las puertas de sus corazones y su hogar,
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En mis estad́ıas en Sète encontré muy buenos amigos con quienes tuve fiestas

estupendas y conversaciones muy interesantes. Gracias a Ainhoa, Edgar, Jeanne,

Liliana, Rigo, Marino, Iker, Maitane, Daniel, Ghislaine, Andréa, Camille, Emily,
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Julio y Andrés por ayudar en todo cuanto pod́ıan y colaborar conmigo, además de

invitarme a colaborar con ustedes también. Rodrigo fue un actor fundamental en mi

tesis. Sin su dedicación y eficiencia para tipear grandes volúmenes de datos, habŕıa
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Las madres los encontraban llorando

por un pájaro muerto

y más tarde también los encontraron a muchos

muertos como pájaros.

Estos seres cohabitaron con mujeres traslúcidas

y las dejaron preñadas de miel y de hijos verdecidos

por un invierno de caricias.

Aśı fue como proliferaron en el mundo los portadores de sueños,

atacados ferozmente por los portadores de profećıas

habladoras de catástrofes.

Los llamaron ilusos, románticos, pensadores de utoṕıas

dijeron que sus palabras eran viejas

y, en efecto, lo eran porque la memoria del paráıso es antigua

en el corazón del hombre.

Los acumuladores de riquezas les temı́an

lanzaban sus ejércitos contra ellos,

pero los portadores de sueños todas las noches

haćıan el amor

y segúıa brotando su semilla del vientre de ellas

que no sólo portaban sueños sino que los

multiplicaban

y los haćıan correr y hablar.

De esta forma el mundo engendró de nuevo su vida

como también hab́ıa engendrado

a los que inventaron la manera

de apagar el sol.

Los portadores de sueños sobrevivieron a los climas gélidos

pero en los climas cálidos casi parećıan brotar por

generación espontánea.

Quizá las palmeras, los cielos azules, las lluvias torrenciales

tuvieron algo que ver con esto.

La verdad es que como laboriosas hormiguitas

estos espećımenes no dejaban de soñar y de construir

hermosos mundos,

mundos de hermanos, de hombres y mujeres que se

llamaban compañeros,

que se enseñaban unos a otros a leer, se consolaban
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en las muertes,

se curaban y cuidaban entre ellos, se queŕıan, se ayudaban

en el arte de querer y en la defensa de la felicidad.

Eran felices en su mundo de azúcar y de viento

de todas partes veńıan a impregnarse de su aliento

de sus claras miradas,

hacia todas partes saĺıan los que hab́ıan conocido

portando sueños

soñando con profećıas nuevas

que hablaban de tiempos de mariposas y ruiseñores

y de que el mundo no tendŕıa que terminar en la hecatombe.

Por el contrario, los cient́ıficos diseaŕıan

puentes, jardines, juguetes sorprendentes,

para hacer más gozosa la felicidad del hombre.

Son peligrosos

– imprimı́an las grandes rotativas

Son peligrosos

– dećıan los presidentes en sus discursos

Son peligrosos

– murmuraban los art́ıfices de la guerra.

Hay que destruirlos

– imprimı́an las grandes rotativas

Hay que destruirlos

– dećıan los presidentes en sus discursos

Hay que destruirlos

– murmuraban los art́ıfices de la guerra.

Los portadores de sueños conoćıan su poder

por eso no se extrañaban

también sab́ıan que la vida los hab́ıa engendrado,

para protegerse de la muerte que anuncian las profećıas

y por eso defend́ıan su vida aún con la muerte.

Por eso cultivaban jardines de sueños

y los exportaban con grandes lazos de colores.

Los profetas de la oscuridad se pasaban noches

y d́ıas enteros
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vigilando los pasajes y los caminos

buscando estos peligrosos cargamentos

que nunca lograban atrapar

porque el que no tiene ojos para soñar

no ve los sueños ni de d́ıa, ni de noche.

Y en el mundo se ha desatado un gran tráfico de sueños

que no pueden detener los traficantes de la muerte;

por doquier hay paquetes con grandes lazos

que sólo esta nueva raza de hombres puede ver

la semilla de estos sueños no se puede detectar

porque va envuelta en rojos corazones

en amplios vestidos de maternidad

donde piesecitos soñadores alborotan los vientres

que los albergan.

Dicen que la tierra después de parirlos desencadenó un cielo de arcoiris

y sopló de fecundidad las ráıces de los árboles.

Nosotros sólo sabemos que los hemos visto

sabemos que la vida los engendró

para protegerse de la muerte que anuncian las profećıas.

Gioconda Belli (Los portadores de sueños)
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3.2 Northsouth section of oxygen in the Pacific and Atlantic Oceans fol-

lowing the coast 1000 km offshore of the eastern boundary. Location

of the 10°-latitudinal bands chosen for comparison within each EBUS

are shown in black. Data are from the World Ocean Atlas 2005 (Gar-

cia et al., 2006a,b). Source: Chavez and Messié (2009) . . . . . . . . 45
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Résumé Exécutif

Introduction

La pêche est probablemment la dernière activité de fourragement des êtres hu-

mains dans plusieurs endroits du monde (Cury and Miserey, 2008). Elle a fait

l’objet d’études en écologie comportementale surtout dans des perspectives anthro-

pologiques et archéologiques (centrées sur des populations anciennes et des tech-

niques de pêche primitives; par exemple dans Bird and O’Connell, 2006; Cronk,

1991). La question du comportement de fourragement des pêcheurs modernes et

de ses réponses adaptatives aux conditions écologiques n’a été abordée que dans

très peu d’études, surtout à cause des difficultés d’accès aux données simultanées

du comportement des pêcheurs et des conditions écologiques, mais aussi, dans la

plupart des cas, à cause de l’hypothèse implicite que les pêcheurs sont au-dessus de

tous les autres predateurs, et donc à l’abri de modifications des conditions abiotiques

et biotiques sur le court terme.

Dans le cadre de l’écologie du mouvement (Nathan et al., 2008), nous abordons

la question de l’écologie du comportement des pêcheurs par l’analyse des données de

ses trajectoires dans un contexte écologique. Ces analyses nécessitent un laboratoire

naturel idéal, où des trajectoires des pêcheurs et des observations sur leur comporte-

ment seraient accessibles, et où la variabilité des composantes clés dans l’écosystème

serait évaluée soigneusement. L’écosystème du Courant de Humboldt au large du

Pérou offre ces conditions, pour trois raisons principales (Chavez et al., 2008): (1)

il soutient la pêcherie monospécifique la plus large du monde (anchois péruvien

ou Engraulis ringens), (2) il est soumis à une variabilité climatique régionale in-

tense à diverses échelles spatio-temporelles, et (3) il existe une forte surveillance

de l’écosystème et la pêcherie. Cette surveillance comprend des informations par

satellite sur les conditions environnementales, des indices sur la biomasse et la dis-

tribution des population de poissons, d’un système de suivi des bateaux de pêche

(VMS, acronyme en anglais pour Vessel Monitoring System) et d’un programme

xxxix



xl Chapter 0. Résumé Exécutif

d’observateurs en mer pour une petite fraction de la flottille. En utilisant toutes

ces sources d’information, nous visons à caractériser le comportement des pêcheurs

d’anchois péruviens et à analyser comment leur comportement s’adapte à des con-

ditions externes diverses.

Les dynamiques du comportement des pêcheurs sont explorées à quatre échelles

différentes: (1) les modes comportementaux (c-à-d., recherche, pêche et route) au

sein des marées (sorties de pêche) ; (2) les patrons comportementaux parmi les

marées; (3) les patrons comportementaux par saison de pêche conditionnés par des

scénarios écosystémiques; et (4) les patrons spatiaux des positions de modes com-

portementaux, que nous utilisons pour la création de cartes de probabilité de la

présence d’anchois.

Données

Données sur la pêche

Pour ce travail, nous avons utilisé une base de données couvrant 100% de la flotille in-

dustrielle péruvienne de pêche d’anchois (> 1000 bateaux) de 2000 à 2009. L’utilisation

du VMS par toute la flotille est imposée par la loi depuis 2000. Les positions des

bateaux (± 100 m de précision) sont émises chaque ∼ 1 heure; pourtant il peut y

avoir quelques irrégularités (par exemple, 0.17, 0.99, 1.2 heures) dans la durée d’un

pas (constitué de deux émissions consécutives). Puisqu’il n’existe pas de méthode

d’interpolation optimale standard pour ces cas (Langrock et al., 2012), nous avons

travaillé avec les émissions telles qu’elles sont. Par conséquent, nous avons considéré

que les données VMS comprennent des trajectoires (c-à-d., des séries de positions)

avec des pas non réguliers. Pour chaque trajectoire VMS, plusieurs variables ob-

servées ont été calculées à chaque pas: vitesse (sp), cap (θ), changement de vitesse

et de cap entre le pas précedent et le pas présent (∆sp−1 et ∆θ−1) et entre le pas

présent et le pas suivant (∆sp+1 et ∆θ+1). Pour chaque marée, plusieurs descrip-

teurs ont été calculés aussi: durée totale (Dur), distance parcourue (Dist), distance

maximale à la côte (Max.DC), latitudes et longitudes maximales et minimales at-

teintes durant la marée (Lat.Max, Lat.Min, Lon.Max et Lon.Min).

De plus, l’Institut de la Mer du Pérou (IMARPE), dispose d’un programme

d’observateurs en mer qui couvre un échantillon de ∼ 1% des marées. Ils enreg-

istrent la position et le temps associés à chaque mode comportemental réalisé au
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cours des marées; à savoir: pêche, recherche et route. Pour les autres 99% des

marées, les modes comportementaux sont unconnus.

En utilisant les critères décrits par Bertrand et al. (2007, 2005); Joo et al.

(2011) et dans l’annèxe A, nous avons construit une base de données croisée (VMS-

observateurs), pour laquelle le mode comportemental associé à chaque émission VMS

est connu. Cette base de données couvre l’année 2008 et est composée de 242 marées.

Données sur les anchois

Depuis 1983, IMARPE conduit, en moyenne, deux campagnes scientifiques acous-

tiques par an, pour évaluer la biomasse et la distribution des populations de pois-

sons. Ces campagnes comprennent des transects de ∼ 100 nm parallèles entre eux

(séparés par ∼ 15 nm) et perpendiculaires à la côte. Des échosondeurs scientifiques

Simrad (kongsberg Maritime AS, Norvège) travaillant à des fréquences différentes

sont utilisés pour estimer les biomasses (voir Castillo et al., 2009; Gutiérrez et al.,

2007; Simmonds et al., 2009). Un échantillonnage extensif au chalut pélagique

complète les évaluations acoustiques pour l’identification des espèces. Le ‘nautical-

area-backscattering coefficient’ (NASC, en m2.mn−2), un indice de biomasse de pois-

son (Simmonds and MacLennan, 2005), est enregistré à chaque unité élémentaire

d’échantillonnage geo-référencée (ESDU, acronyme en anglais) de 1 nm.

À partir de chaque campagne acoustique, cinq descripteurs ont été extraits: (i)

le NASC d’anchois moyen, utilisé comme un indice de biomasse d’anchois (sA); (ii)

un indice de biomasse local (s+
A), c-à-d., le NASC d’anchois moyen uniquemment

pour les ESDU avec présence d’anchois; (iii) un indice d’occupation spatiale (ISO),

c-à-d., le pourcentage d’ESDU avec de l’anchois; et (iv et v) le centre de gravité et

l’inertie de la distance à la côte du NASC de l’anchois (DC et I, respectivement).

Données environnementales

Nous avons utilisé des données de température superficielle de la mer (SST) obtenues

avec le capteur AVHRR des satellites de la NOAA entre 2000 et 2009. Les données

satellite de chlorophylle-a (CHL) entre 2000 et 2007 ont été obtenues du capteur

SeaWIFS et celles entre 2008 et 2009, du capteur MODIS. Les données CHL de

MODIS ont été corrigées pour correspondre aux données SeaWIFS en utilisant la

période commun pour les deux capteurs (2002-2008). Toutes les données satellite,

initialement à une résolution spatiale de 4 km et temporelle hebdomadaire, ont été
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moyennées par mois et sur toute la superficie étudiée au large du Pérou. Ensuite,

pour obtenir une valeur représentative par période de temps étudiée, une valeur

moyenne est calculée pour chacune de ces variables.

Pour prendre en compte la distribution verticale de la zone de minimum d’oxygène,

un paramètre critique dans l’écosystème d’Humboldt (Bertrand et al., 2011), nous

avons calculé la profondeur de l’oxycline (OXY), c-à-d., la profondeur à laquelle

l’oxygène dissolu est égal à 2 ml.l−1. Toutes les mesures ont été faites à partir

des bouteilles Niskin et des données CTD échantillonnées pendant les campagnes

scientifiques conduites par IMARPE. Pour chaque période de temps étudiée, la pro-

fondeur de l’oxycline moyenne a été calculée comme une moyenne des valeurs men-

suelles pondérée par le nombre d’observations par mois.

Méthodes

Nous présentons ici les méthodes statistiques utilisées dans ce travail: les modèles

Markoviens, que nous utilisons pour inférer les modes comportementaux au sein des

marées; les méthodes multivariées, que nous utilisons ensuite pour caractériser les

marées et leurs associations avec des variables liées à la biomasse et distribution

des poissons, et aux conditions environnementales; et les outils géostatistiques, que

nous utilisons pour produire des cartes de probabilité de présence d’anchois et pour

évaluer la co-variation spatiale entre ces probabilités de présence et la biomasse

acoustique de l’anchois.

Modèles Markoviens

Les modèles de Markov cachés (HMM; Rabiner, 1989) sont les modèles les plus

utilisés pour inférer des modes comportementaux en utilisant la série des données de

trajectoires observées. Un HMM combine deux processus: un processus de Markov

de premier ordre sous-jacent pour la séquence d’états (c-à-d., la séquence de modes

comportementaux), où la probabilité d’être dans l’état st au temps t dépend unique-

ment de l’état précedent st−1; et un processus d’observation conditionnel aux états,

où la probabilité de l’observation Xt = xt depend uniquement de l’état actuel st.

Dans un processus de Markov de premier ordre, il est supposé que le temps passé

dans un état donné suit une loi géométrique. La loi géométrique est sans mémoire;

cela veut dire que, au temps t donné, le temps d’attente pour changer d’état est
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indépendant du temps passé dans l’état précedent. Cependant, en pratique, le

comportement d’un pêcheur n’est pas sans mémoire. Alors, un processus de semi-

Markov peut être plus adéquat. Il modélise les durées des états explicitement et

peut considérer n’importe quelle loi de probabilité. Un modèle de semi-Markov

caché (HSMM; Guédon, 2003) est donc un généralisation d’un modèle de Markov

caché. Un HSMM combine deux processus: un processus d’observation conditionnel

aux états comme dans les HMM et un processus de semi-Markov pour les états.

Modèles discriminatifs

Les modèles discriminatifs sont des approches alternatives pour inférer les modes

comportementaux associés à des trajectoires. L’inférence de la séquence des modes

comportementaux est défini comme un problème de classification, c-à-d., de la

détermination de la classe (mode comportemental) associée à chaque position dans

la trajectoire. Dans un cadre supervisé, les modèles discriminatifs apprennent des

règles de classification pour prédire une classe à partir d’un vecteur observé xt. Les

forêts aléatoires (RF; Breiman, 2001), les machines à vecteurs de support (SVM;

Burges, 1998) et les réseaux de neurones artificiels (ANN; Warner and Misra, 1996)

sont parmi les techniques d’apprentissage automatique les plus utilisées (Hastie

et al., 2009). Pour les SVM, l’objectif est de maximiser la distance marginale

de l’hyperplane qui sépare les classes. Pour les ANN, l’objectif est de minimiser

l’erreur de classification. Enfin pour les RF, la discrimination est achevée par la

minimisation des variances à l’intérieur des groupes et la maximisation de la vari-

ance entre groupes. Les performances relatives de ces méthodes varient selon la

structure de l’espace d’observation de chaque cas d’étude particulier (Meyer et al.,

2003). Une propriété importante des modèles discriminatifs est qu’ils n’ont besoin

d’aucune hypothèse sur la nature des variables observées, leurs distributions ou leurs

covariances.

Méthodes multivariées exploratoires et descriptives

• Les analyses en composantes principales (PCA; Pearson, 1901) sont utilisées

pour étudier la relation entre variables et entre individus, en réduisant la

dimensionalité de la base de données.

• Les analyses de cluster sont utilisées pour grouper des individus de telle façon

que les individus d’un même cluster soient plus similaires entre eux qu’avec

ceux des autres clusters. Ce sont des méthodes de classification non supervisée
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puisque les clusters ne sont pas définis à priori. L’analyse de classification

hiérarchique organise les partitions dans un dendrogramme (Johnson et al.,

1992) ce qui permet d’étudier de niveaux de classification différents.

• Le coefficient RV (Escoufier, 1973) est une généralisation multivariée du co-

efficient de corrélation de Pearson au carré. Ses valeurs vont de 0 à 1, où 0

indique une association nulle et 1, une association parfaite.

• L’analyse de co-inertie (Dolédec and Chessel, 1994; Dray et al., 2003) est

une méthode multivariée utilisée pour établir le couplage de deux tableaux

ayant le même nombre de lignes (qui peuvent être des individus ou des vari-

ables). Cette analyse vise à maximiser la co-inertie entre les lignes des deux

tableaux. L’analyse de co-inertie multiple (Chessel and Hanafi, 1996) est une

généralisation de l’analyse de co-inertie pour k tableaux (k > 2). Elle vise

à maximiser la co-inertie entre les lignes des tableaux, et calcule un tableau

synthétique représentant la structure en commun des tableaux.

Géostatistiques

Les méthodes géostatistiques donnent des outils pour capturer et modéliser la vari-

abilité spatiale d’une variable quelconque distribuée dans l’espace ou simultanément

dans le temps et l’espace (Chilès and Delfiner, 2012). Pour faire de l’interpolation

spatiale, nous utilisons le krigeage, la méthode d’interpolation géostatistique. Celui-

ci nécessite un modèle de variogramme théorique, qui modélise l’increment dans la

variance entre deux points eloignés entre eux par une distance h, quand h augmente.

Pour évaluer les échelles spatiales auxquelles deux processus (comme la proba-

bilité de présence et la biomasse acoustique) co-varient, nous nous appuyons sur un

co-variogramme empirique. Un co-variogramme est une extension d’un variogramme

pour deux variables; il évalue, à une distance h, dans quelle mesure l’incrément dans

une des variables est associé à un increment ou une réduction dans l’autre variable,

quand h augmente (Rivoirard et al., 2000).

Résultats

Inférence des modes comportementaux

Nous avons comparé plusieurs modèles discriminatifs (RF, SVM et ANN) et Markoviens

(HMM et HSMM) pour inférer des modes comportementaux associés aux trajec-
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toires des pêcheurs, pour un échantillon de ∼ 300 marées pour lesquels les modes

comportementaux étaient connus. Tous les modèles ont obtenu une précision glob-

ale supérieure à 75%. Le HSMM a été le plus performant, suivi par le HMM. La

précision du HSMM à été supérieure pour l’inférence globale des modes (80%) et

aussi pour chaque mode comportemental (pêche, recherche et route; 77%, 67% et

89%, respectivement). Une meilleure performance des modèles Markoviens par rap-

port aux modèles discriminatifs met en évidence l’importance de la modélisation

des dynamiques des états pour pouvoir inférer de façon précise les séquences de

modes comportementaux. Parmi les modèles Markoviens, le HSMM s’est montré

supérieur pour représenter les séquences des modes comportementaux car il modélise

explicitement la durée des états et considère des transitions à l’échelle du segment

(c-à-d., une séquence consecutive des pas associés à un seul mode comportemental).

Grâce à une expérience de simulation, nous avons montré qu’une augmentation de la

résolution temporelle (au minimum une émission VMS toutes les 30 minutes) cause

un incrément significatif dans la précision de la inférence du HSMM. Par conséquent,

nous avons utilisé le HSMM pour inférer les modes comportementaux pour tous les

trajectoires entre 2000 et 2009 qui n’ont pas été échantillonnées par les observateurs

en mer.

Classification de patrons de marées

Les marées, caractérisés par les descripteurs présentés précédemment, plus le temps

de la marée associé à chaque mode comportemental, ont été groupés en utilisant des

analyses de classification hiérarchique. Les marées ont été groupées en 4 clusters, ce

qui explique 61% de la variance. Un premier cluster, composé de 17% des marées, est

associé aux pêcheurs dits ‘stochastiques’ (Allen and McGlade, 1986), qui prennent

des risques importants et se lancent à la découverte. Les marées dans ce cluster sont

les plus longues en durée et en distance, et les plus éloignées de la côte. Un deuxième

cluster, composé de 15% des marées, est associé à la zone sud. Les politiques

de gestion de la pêche dans cette zone sont différentes de celles de la zone nord-

centre (par exemple, les dates de fermeture de la pêche, les quotas de capture, et

les restrictions côtières pour pêcher). Un troisième cluster, composé de 32% des

marées, est surtout lié aux marées des bateaux à coque en bois (les autres clusters

sont plutôt lié aux marées des bateaux à coque en acier). Ces marées sont courtes

et près de la côte, et une grande partie des marées est dédiée à la pêche et à la

recherche, plutôt qu’à la route. Un dernier cluster est composé de 36% des marées.

Celles-ci, ont parcouru des distances plus grandes, duré plus longtemps et se sont
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plus éloignées de la côte que celles des clusters 2 et 3. Pourtant, ces distances et

durées ne sont pas extraordinaires. Nous appelons les marées du quatrième cluster

des marées ordinaires. Ainsi, nous avons trouvé des groupes des marées associés aux

zones de gestion, aux segments de la flottille et à la personnalité des pêcheurs.

Les scénarios écosystémiques donnent forme aux patrons com-

portementaux des pêcheurs

En utilisant des données simultanées des campagnes acoustiques, information satel-

lite sur l’environnement et VMS (décrits précédemment), nous avons étudié comment

les conditions environnementales et de biomasse et de distribution de l’anchois don-

nent forme au comportement des pêcheurs à l’échelle d’une saison de pêche (c-à-d.,

les périodes de deux/trois mois dans une saison de pêche où toutes ces données sont

accessibles). À l’aide des analyses en composantes principales et des coefficients

RV, nous avons quantifié l’association entre les dynamiques de comportement spa-

tial des pêcheurs (pêcheurs), les conditions environnementales (environnement) et la

biomasse et la distribution spatiale de l’anchois (poissons). Les associations étaient

plus fortes pour des relations plus directes (0.63 de coefficient RV pour pêcheurs et

poissons, et 0.61 pour poissons et environnement) que pour la moins directe (0.56

pour pêcheurs et environnement). Toutes ces associations ont été statistiquement

significatives. L’analyse de co-inertie multiple nous a permis de caractériser com-

ment les pêcheurs sont conditionnés par poissons et environnement. Nous avons

trouvé, par exemple, qu’en période d’été où la SST et la CHL prennent des valeurs

élévées, et l’anchois est abondant localement et près de la côte, plus de temps est

dédié à la pêche qu’à la route, et les pêcheurs restent près de la côte. En outre, quand

l’oxycline était profonde, l’abondance locale et la superficie occupée par l’anchois

était faible; dans ces conditions, les pêcheurs allaient loin de la côte pour chercher

du poisson. Par ailleurs, quand l’anchois était trés concentré dans l’espace, les mou-

vements des pêcheurs étaient très diffusifs, c-à-d., il y avait beaucoup plus de pas

courts (dans les aggrégations d’anchois) que de pas longs (entre les aggrégations).

Enfin, nous avons montré que le comportement spatial des pêcheurs est conditionné

fortement par des scénarios environnementaux. Ceci ouvre des possibilités pour

l’utilisation des pêcheurs comme des indicateurs de l’écosystème.
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Le comportement spatial des pêcheurs et la biomasse acous-

tique des poissons: les deux faces d’une même pièce?

Pour évaluer si le comportement spatial des pêcheurs reflète celui de la distribution

spatiale de l’anchois, nous avons: (1) construit un proxy de la présence d’anchois

en utilisant les modes comportementaux géo-référencés au cours de trois saisons de

pêche, (2) fait des cartes du proxy de présence par krigeage, (3) comparé ces patrons

spatiaux à ceux de la biomasse acoustique de l’anchois (aussi krigée). Au cours de

cette dernière étape, nous avons trouvé que les co-variations en distance à la côte et

superficie occupée varient selon la saison de pêche étudiée; pour 2001 et 2009 il y a

des fortes corrélations, mais pour 2008 ce n’est pas le cas. Par ailleurs, les analyses

des variogrammes croisés indiquent que la co-variation entre le proxy de présence

d’anchois et la biomasse acoustique reste positive pour toutes les distances et les trois

saisons, et atteint ses valeurs les plus élévés à des très grandes échelles. Cependant,

les variogrammes de proxy de présence et de biomasse acoustique on montré des

structures à petite échelle qui n’ont pas été trouvées dans les variogrammes croisés,

ce qui indique que ces structures n’ont pas été co-occurrentes. Les deux sources

d’information, pêcheurs et campagnes scientifiques acoustiques, semblent donc se

complémenter mutuellement; et les cartes de proxy de présence peuvent être utilisées

plutôt comme des cartes d’effort spatialisé et/ou des cartes d’anchois détecté par les

pêcheurs.

Conclusions

Les analyses effectuées dans ce travail montrent que le comportement du pêcheur

n’est pas invariant d’échelle, et permettent de mieux comprendre ce comportement à

des échelles différentes. Dans la figure 0.1, un schéma de Stommel du comportement

des pêcheurs est présenté. Nous montrons les unités de comportement étudiées (le

mode comportemental, la marée, la saison de pêche); les facteurs qui, à l’égard de

nos résultats, conditionnent le comportement à chaque échelle (flèche noire), et les

structures des aggrégations de poisson et de l’environnement correspondantes aux

échelles étudiées. Dans ce travail, nous avons montré que, à l’échelle du mode com-

portemental, ce sont les états internes qui comptent principalement pour inférer les

modes comportementaux. Ces états internes se manifestent à travers la trajectoire

observée (c-à-d., à travers les vitesses et les changements de cap) et les séquences

comportementales (par exemple, le comportement au cours du segment précédent de

la séquence conditionne le comportement au segment suivant). Ces composantes ont
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permis l’obtention de 80% de précision lors de l’inférence des modes comportemen-

taux par des modèles de semi-Markov cachés. À l’échelle de la marée, les facteurs

principaux sont les règles de gestion (zones sud et nord-centre), les segments de la

flottille (acier versus bois) et la personnalité des capitaines (preneurs de risques ver-

sus suiveurs). La variance expliquée par les clusters désignant ces facteurs est égal

à 61%. À l’échelle de la saison de pêche, la biomasse et la distribution d’anchois,

et des facteurs environnementaux tels que la température de surface de la mer,

la chlorophylle-a et la profondeur de l’oxycline ont conditionné significativement

le comportement spatial des pêcheurs (0.63 et 0.55 d’association entre pêcheurs et

poissons, et entre pêcheurs et environnement, respectivement). Evidemment ces

résultats sont opportunistes, car ils dépendent des données disponibles à chaque

échelle. Cependant, les niveaux de variance expliquée sont suffisamment élevés pour

confirmer que les processus identifiés sont les plus importants.
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Figure 0.1: Schéma de Stommel pour les unités comportementales des pêcheurs et
leurs moteurs. Les échelles spatio-temporelles pour les structures des poissons et de
l’environnement sont basés sur Chelton (2001); Dickey and Lewis (2006) et Bertrand
et al. (2008a).
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Ce travail propose enfin une vision plus large du comportement de pêcheurs.

Les pêcheurs ne sont pas seulement des agents économiques, ils sont aussi des four-

rageurs, conditionnés par la variabilité de l’écosystème. Pour conclure, nous discu-

tons dans ce travail de la façon dont les résultats obtenus peuvent servir de base

à la gestion de la pêche, aux analyses de comportement collectif et à des modèles

end-to-end.
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Chapter 1

Introduction

Behavior is in the heart of many disciplines, such as ethology, comparative psychol-

ogy, behavioral biology, behavioral ecology and evolutionary psychology. However,

there is no unanimous definition of behavior. In an attempt to reach a consensus,

Levitis et al. (2009) proposed behavior to be defined as the internally coordinated

responses (actions or inactions) of living organisms (individuals or groups) to inter-

nal and/or external stimuli.

Behavioral ecology is the discipline that studies the variability of behavior in re-

lation to ecological conditions (i.e., physical, biological and social conditions; Davies

et al., 2012). Ecology sets the stage on which individuals play their behavior, so the

best way to behave depends on ecological selection pressures, such as the distribu-

tion in space and time of food, enemies and places to live. Behavioral ecology studies

how variations in ecological conditions cause variations in the behavior that organ-

isms display, whether at between-species, between-populations, between-individuals

or even within-individual levels. Behavioral ecology also comprises the fitness conse-

quences of behavioral strategies that organisms adopt; fitness is typically measured

in terms of the survival, reproductive success or energetic return of an individual

(Nettle et al., 2013).

Human behavioral ecology focuses on how human behavior varies with the eco-

logical context. Humans have been particularly successful for adjusting to diverse

environments thanks to efficient adaptive learning and plasticity. Though recogniz-

ing humans’ unique cognitive and behavioral capacities, the approach for studying

human behavioral ecology is the same as for other animals: understanding the fitness

costs and benefits given the ecological context, testing hypothesis of fitness maxi-

mization and making predictions that can be tested. At the beginning of human

1
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behavioral ecology in the 1970s, research focused on studying foraging behavior and

strategies in hunting, fishing and gathering populations (Cronk, 1991; Smith, 1983).

Many aspects of foraging decision making were analyzed, such as: what they should

eat, where they should forage, with whom they should forage, and how long they

should forage (Cronk, 1991). In summary, how do their foraging strategies adapt to

the surrounding context.

Nowadays, more than 40000 years after the first evidence on human fishing ac-

tivities (O’Connor et al., 2011), fishing may be the last human foraging activity in

many places in the world (Cury and Miserey, 2008). Fishermen are peculiar for-

agers, as they typically rely on sophisticated technology and are strongly driven

by economical factors. However, their foraging behavior still needs to constantly

adapt to physical, biological, and social dynamics (Bertrand et al., 2007). Fishing

behavioral ecology has been mostly studied from anthropological and archaeologi-

cal perspectives, where the object of study were ancient populations with primitive

fishing techniques (Bird and O’Connell, 2006; Cronk, 1991). Due to the economi-

cal context, technological advances and globalization, analyzing behavior in modern

fishing may seem more complicated. How could behavior be observed and analyzed?

And how can its relationship with the ecological conditions be assessed?

Behavior can only be scientifically studied if it is performed – or analyzed – in

the form of repeatable, publicly recognizable units (Ridley, 1995). Without recog-

nized units of behavior, anecdotes might accumulate, but each of them would be

closed to criticism, and rigorous testing of theories would be impossible. One way

to conceive and interpret behavior is through movement (Ridley, 1995; Tinbergen,

1951). Indeed, in motile individuals like fishermen – or more specifically, fishing

vessels – behavior can be expressed through movement. Movement paths can be

decomposed into series of behavioral patterns, such as fishing, searching for prey,

drifting, anchoring, for a fishing trip. Behavioral patterns can also be observed at

larger scales through movement: when observing fishing trips, as individual units,

some of them could be more sinuous than others, shorter than others, or go far-

ther from the coast. Furthermore, fishermen behavior among several fishing seasons

could also be compared and characterized. How ecological conditions shape fisher-

men behavior can be analyzed at any of these levels.

Those analyses would ideally require a natural laboratory, where fishermen tra-

jectories and observations on their behavior are available, and the variability in key
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components of the ecosystem can be thoroughly assessed. The Northern Humboldt

Current System (NHCS) off Peru offers such conditions. First, because it sustains

the world’s largest monospecific fishery (Peruvian anchovy or anchoveta, Engraulis

ringens). Second, because the NHCS is submitted to an intense regional climatic

variability at a variety of spatio-temporal scales (Chavez et al., 2008). And third, be-

cause the intense monitoring of the ecosystem and the fishery translates into a great

amount of available data. The ecosystem monitoring comprises satellite information

on environmental conditions (e.g., sea surface temperature, Chlorophyll-A, sea level

anomaly) at daily and weekly resolutions; fish population distribution and biomass

are monitored through scientific acoustic surveys (two to three times a year); and

fishermen movement is monitored through a Vessel Monitoring System (VMS). Since

2000, the use of VMS tracking devices is mandatory for industrial purse-seiners. Ves-

sels positions (±100m of accuracy; ∼ 1 record per hour) for hundreds of thousands

of fishing trips are available for scientific purposes since. Fishermen behavior at sea

is also documented through a program of on-board observers for a sample of ∼ 25

vessels per fishing season (∼ 2% of the fleet).

In this work, we propose an approach to fishermen behavioral ecology at sev-

eral spatio-temporal scales. We aim at characterizing Peruvian anchovy fishermen

behavior by means of their trajectories and analyze how their movement behavior

adapt to different ecosystem scenarios. The dynamics of fishermen behavior are ex-

plored at four scales: (1) the behavioral modes within fishing trips (which could be

regarded as the elemental units of behavior observed in fishermen trajectories); (2)

the behavioral patterns among fishing trips; (3) the behavioral patterns by fishing

season conditioned by ecosystem scenarios; and (4) the spatial patterns of behav-

ioral mode positions, that we use for building maps of anchovy presence proxy. The

thesis is organized into six chapters as follows1:

Because behavior can be studied through movement, we will study the behavioral

ecology of fishermen through movement ecology. Chapter 2 provides a brief intro-

duction to movement ecology, the different approaches (Lagrangian and Eulerian)

to modeling movement, the trajectory data and the approaches taken in ecology

for movement analysis. Within the movement ecology framework, we introduce the

analysis of fishermen behavior, for which the VMSs have played a fundamental role.

After a brief description of how a VMS works and the type of data that it provides,

we review the modeling approaches to fishermen movement, the contributions of

1Most of the chapters (all of them excepting 2 and 3) are written in the form of scientific articles
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movement data on fisheries science and management, and the remaining challenges.

Since the present work is applied to the fishermen in the Northern Humboldt

Current System, in Chapter 3, we provide an outline of the NHCS that should

help the reader to contextualize and interpret the following chapters, particularly

the last two chapters. We describe the oceanography and biology, as well as their

dynamics at multiple scales. We then describe several aspects of the anchovy fish-

ery, the governmental management and the tools for monitoring the fishery and the

ecosystem.

In Chapter 4, we study the behavioral modes within fishing trips. In order to

do that, the modes should be a priori defined. For the Peruvian anchovy fishery,

on-board observers in conjunction with skippers, defined a list of the possible activ-

ities made at sea during a fishing trip: cruising, fishing, searching, drifting, helping

other vessels, and receiving/giving fish from/to other vessels. Since these activities

represent distinct behaviors, we consider them behavioral modes. The sequences of

behavioral modes associated with the fishing trips are only registered by on-board

observers for a sample of ∼ 25 fishing vessels (∼ 2% of the fishing fleet). We thus

turn to VMS position records, which are available for 100% of the fishing fleet. Dis-

posing of concomitant VMS and on-board observers data, we build a groundtruthed

dataset, i.e., samples of tracks or positions for which behavioral modes are known.

The goal is to use the groundtruthed dataset for training and validating several

models, to choose the model with best performance and to use it for inferring the

behavioral mode sequences in all the fishing trips.

In Chapter 5, we analyze the variability in fishermen behavior at the scale of

fishing trips. We hypothesize that, at this scale, the skipper’s personality, vessel

characteristics and management restrictions generate different patterns in fishermen

behavior, and thus that fishing trips could be grouped according to these patterns.

We characterize each trip by a series of features such as its duration, maximum dis-

tance to the coast, maximum and minimum longitudinal and latitudinal locations,

and time spent in each behavioral mode (estimated with the methods from the pre-

vious chapter) and reveal different patterns in fishermen trips using cluster analysis.

In Chapter 6, we explicitly analyze how environmental and anchovy conditions

shape fishermen behavior at the scale of a fishing season. Features describing av-

erage spatial and temporal behavior of fishermen throughout a fishing season are
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computed. In most cases, they are averages of the fishing trip features computed

in the preceding chapter. We describe and quantify the associations between these

features and descriptors of the environment (sea surface temperature, Chlorophyll-

A and oxycline depth) and the anchovy biomass and distribution (assessed through

acoustic surveys).

In Chapter 7, we examine a broader scale: we study the set of positions – and

their corresponding behavioral modes – of the whole fishing fleet at a time range of

∼ 30 days. We hypothesize that fishermen spatial behavior reflects anchovy spatial

distribution and thus, that maps of proxy of anchovy presence can be built from

fishermen spatial behavior. Because VMS data is available in almost real time, the

maps of presence proxy could be highly appealing for management purposes. We

build the maps of presence proxy and compare them to maps of anchovy acoustic

biomass. We then evaluate the co-variation of spatial descriptors between the pres-

ence proxy and the acoustic biomass.

General conclusions on the scientific contributions of this work and perspectives

are presented in a final chapter.
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Chapter 2

Movement ecology and fishermen

“All animals impart movement and are moved for the sake of something, so that

this is the limit of their movement, the thing for-the-sake-of-which”

– Aristotle (De Motu Animalium)

2.1 Movement ecology

In motile individuals, behavior can be expressed through movement. Movement

ecology aims at studying the process of movement as a result of a dynamic and

continuous interaction between the environment and the organism’s internal states

at multiple scales.

Nathan et al. (2008) propose a movement ecology framework for exploring the

causes, mechanisms and patterns of movement, that should also facilitate the under-

standing of the consequences of movement for the ecology, adaptability and variabil-

ity of individuals, populations and communities (Fig. 2.1). Movement is composed

of 4 components: an internal state, a motion capacity, a navigation capacity and

external factors. The internal state accounts for the physiological and psychological

states that drive the organism to fulfill certain goals; it addresses the question of why

to move? The motion capacity accounts for the mechanisms that enables moving

(how to move). The navigation capacity accounts for the ability to orient in space

and time, deciding when (initiation and cessation) and where (direction and posi-

tion) to move. And finally, the external factors comprise all possible spatio-temporal

structures and dynamics that can make the individual modify its movement; it in-

cludes other individuals. Movement paths are produced as a result of the interplay

between those 4 components.

7
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Moreover, given that movement is performed by an individual whose behavior

adapts and changes through certain time scales, movement should also be expected

to vary and adapt. Hence, the causes and consequences of movement should be in-

vestigated as well. Therefore, describing movement patterns is essential and criteria

should be established for relating those patterns to their causes and consequences

(Levin, 1992). There is no single correct scale, approach or method for analyzing

movement patterns. In the next section, we introduce the data needed for studying

movement, the main existing approaches and methods.

Figure 2.1: General conceptual framework for movement ecology proposed by
Nathan et al. (2008)

2.2 Frameworks for studying movement

Movement analysis can be regarded under two main frameworks: the Lagrangian

and the Eulerian approaches (Turchin, 1998). Lagrangian and Eulerian points of



2.3 Trajectory data 9

view roughly refer to the individual and population levels of organization. The La-

grangian point of view is centered on the moving individual; i.e., the movement is

studied by following the trajectory through space and time. Under this framework,

detailed characteristics of the individual’s behavior can be explicitly analyzed. For

empirical applications, the major drawback of that framework is that it requires rel-

atively large series of trajectory data; for simulation studies, the major drawbacks

are the computational costs. By contrast, the Eulerian point of view is centered on a

point in space. This point is characterized by densities and fluxes of moving organ-

isms; i.e., it is like taking a photograph of the fluxes field at a particular fixed time.

It may allow a more practical calculation of the spatial variability of the organisms

distribution as a function of time (Hernández, 2012). Yet, individual properties are

not explicitly taken into account.

In the past, the Eulerian framework was largely preferred in movement analysis;

but with the increasing availability of trajectory data and the analytical and com-

putational advances, the Lagrangian framework has become increasingly popular

(Nathan et al., 2008). Still, the Eulerian framework may remain the only practi-

cal way to study passively transported organisms such as microorganisms, airborne

insects and seeds. Some works use mixed Eulerian and Lagrangian approaches for

modeling populations considering the level of individual detail that the Lagrangian

point of view provides (e.g., Black and McKane, 2012; Morales et al., 2010)

In this work, we analyze fishermen movement within a Lagrangian framework.

Following each individual through its trajectory will allow us understand the drivers

of fishermen behavior individually, considering their fishing trips as composed of

a sequence of behavioral mode units, and then considering the trips themselves

as units of behavior. Beyond the scope of this work, combining Eulerian and La-

grangian frameworks would be desirable for understanding both the individual and

collective movement. We now provide an introduction to tracking data and analyses

in movement ecology.

2.3 Trajectory data

In general, the movement path of an individual is continuous and bounded in space

and time. In order to document that path, observers must follow and record the

individual without losing it, to get a spatio-temporal representation of its track
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(Turchin, 1998). Nowadays, practically all studies use electronic devices for track-

ing tasks. Most of them are associated with global positioning systems (GPS), which

are becoming more accurate and more available (i.e., cheaper), allowing the tracking

of individuals practically anywhere in the planet (e.g., Block et al., 2011). Thus,

space does not represent a constraint to the observation, whereas time does: in al-

most all cases, individuals cannot be tracked throughout their whole life. Another

time-related limitation resides in the discrete sampling inherent to observation. In

order to record the observed path, it has to be represented in a discrete form suit-

able for computer storage and analysis (Turchin, 1998, Fig. 2.2). Time between

steps (i.e., displacements between two consecutive positioning records) vary among

studies (from infra-second frequencies in Wilson et al. (2008) up to 6 hours in Tew

Kai et al. (2013)) and are not necessarily regular (Jonsen et al., 2013).

Approximating a continuous movement by a discrete series of positions presents

two types of flaws which depend on the sampling frequency and have an impact

on the spatial information (e.g., Palmer, 2008; Ryan et al., 2004). High-frequency

data are sensitive to both measurement errors and low precision, leading to overes-

timation of distances traveled (i.e., length of the movement paths). Conversely, low-

frequency data may translate into information loss, which leads to underestimation

of the distances traveled. When too high-frequency data is available, error correc-

tion methods such as resampling or step aggregations are recommended (Turchin,

1998). State-space models are alternative methods for correcting error while mod-

eling the movement process, and are claimed to be more rigorous and powerful

(Jonsen et al., 2013, Fig. 2.3). For low-frequency data, the ideal solution would be

to increase the sampling frequency, which is often a financial problem rather than a

technical one. If this is not possible, several interpolation techniques (besides simple

linear interpolation) could be used for improving the representations of movement

paths (e.g., Hintzen et al., 2010; Russo et al., 2011a; Tremblay et al., 2006, Fig. 2.4).

2.4 Movement paths and random walks

Movement paths can be described by simple statistics (e.g., duration, distance trav-

eled), measures of path sinuosity (Benhamou, 2004), and of autocorrelation (Legen-

dre and Legendre, 1998; Perry et al., 2002). Another type of measure is the fractal

dimension (Bez and Bertrand, 2010; Mandelbrot, 1977), that can be used as an in-

dicator of spatial coverage. As stated by Mandelbrot (1979), the fractal dimension
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Figure 2.2: The path of a German cockroach (Blatella germanica) sampled at dif-
ferent time resolutions. Source: Turchin (1998)

Figure 2.3: Graphical results of fitting a state-space model (SSM) to simulated
movement data of a marine turtle. Plots of estimated (black) and observed (white)
pathways, overlaid. Source: Jonsen et al. (2003)
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Figure 2.4: Laysan albatross Argos track (A), and selected examples of linear (B)
and Bézier (C) interpolation of this track (every 10 minutes). Source: Tremblay
et al. (2006)
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of a set of two-dimensional points (e.g., a 2-D trajectory) can be seen as a measure

of its propensity to cover the plane, with a value of 1 for the lowest plane coverage

(a straight line or a circumference, for example) and 2 for the fullest coverage of

some area in the plane (a Hilbert curve, for example).

Another approach for characterizing movement paths is random walk model-

ing. Random walks have been extensively used for modeling movement (see Codling

et al., 2008, for a review). It can be traced back to the analyses of Brown (1828) of

pollen particles motion in what would later be called Brownian motion (Hänggi and

Marchesoni, 2005). A random walk model is a formalization of the intuitive idea

of taking successive steps, each one of a random length and in a random direction

(Bartumeus, 2007). Thus, a trajectory can be regarded as a discretized sequence

of steps of variable length, separated by variable turning angles. These discrete

variable-length steps, reflecting different behavioral units, will be henceforth called

moves, to distinguish them from the step defined previously (displacements between

two consecutive recorded positions). A random walk is then a stochastic process

defined by the statistical distributions of the move lengths and the turning angles.

The simplest models of movement using random walks are uncorrelated and un-

biased; i.e., there is no autocorrelation in direction and there is no preferred direction

(Codling et al., 2008). Correlated random walks (CRWs), on the other hand, involve

a correlation between the orientations of successive steps, what is termed persistence

(Patlak, 1953). Random walk models with a consistent bias in a preferred direction

are named biased random walks (BRWs), or biased and correlated random walks

(BCRWs) if persistence is also observed.

The choice of the most appropriate random walk model for describing the move-

ment of animals and humans (Brownian, Lévy, Poisson-like, as well as correlated,

biased and bounded versions of all the others) has been keenly debated (Benhamou,

2007; Edwards et al., 2007; Humphries et al., 2010; Plank and Codling, 2009; Travis,

2007). Part of the debate focuses on the methodology for fitting and selecting the

best model and the other part is centered on whether the individuals actually per-

form a given random walk. Fitting a random walk to an individual’s movement

basically consists in computing the length of the moves in the movement paths,

and modeling the tail of the distribution of the move lengths (Lévy, Brownian and

Poisson-like walks are characterized by power-law, Gaussian and exponential tails,

respectively). The methodological discussions encompass data pre-treatment (Ed-
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wards et al., 2007), the choice of the start of the tail of the distribution (Bertrand

et al., in review), the method used for fitting a model to the data and estimating

the parameters (Edwards et al., 2007), the method for testing the goodness-of-fit

(Bertrand et al., in review), and the selection of the model. This last issue is not

focused on the method for model comparison, but on the choice of the group of mod-

els to compare, since it differs among studies. An illustrative example is the work

of Reynolds (2012), who compares Lévy walks with composite correlated random

walks, claiming that Lévy walks remained contentious models partly because they

were often compared with simplistic alternative models, rather than against strong

alternative models.

Instead of determining ‘the best’ model for each type of organism, it is plausible

that an individual, depending on the conditions and the spatial and temporal scales

at which its movements are observed, can produce trajectories that are consistent

with several distinct models (Benhamou, 2007; Humphries et al., 2010). Bertrand

et al. (in review) proposed an approach that lets the most likely random walk model

emerge from the data instead of confronting a limited set of candidate models. They

proposed the Generalized Pareto distribution (GPD; Pickands, 1975) for modeling

the tail of the distribution of the move length distribution. The GPD distribution in-

cludes as specific cases the exponential, Gaussian and power-law distributions which

underly Poisson-like, Brownian and Lévy walks, respectively (Fig. 2.5).

The question of whether individuals actually perform random walks or if what

we observe are just random-walk-like patterns, has been eagerly addressed (see for

example Bartumeus, 2009; Benhamou, 2007; Plank and James, 2008; Travis, 2007).

Behind this question lie two perspectives: a phenomenological and pattern-oriented

one, focusing on global and parsimonious models for each study case; and a biome-

chanical and process-oriented perspective, calling possibly for more complex models.

In any case, the value of random walks should lie on their contributions for charac-

terizing movement and behavior. In the words of Matheron (1978): ‘Randomness is

in no way a uniquely defined, or even definable property of the phenomenon itself. It

is only a characteristic of the model or models we choose to describe it, interpret it,

and solve this or that problem we have raised about it. (...) The only real problem

is to know whether a given model, within a given context, does or does not possess

an objective meaning to be able, if necessary, to perform a ‘sorting out’ operation’.

Indeed, the type of random walk model fitted to individuals movement has im-
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portant implications on the interpretation of their foraging strategies. For instance,

Lévy walks are characterized by heavy-tailed (power-law) move length distributions,

due to the occurrence of numerous short moves, and rare and very large moves within

the trajectory. This evidences super diffusive spatial behavior (Codling et al., 2008)

which may emerge from the patchy distribution of prey (Bertrand et al., 2005); i.e.,

if prey are patchy, more time is spent within patches, and less patches are visited,

what reflects a Lévy-like movement path. By contrast, Poisson-like models are char-

acterized by exponential tails, and thus a smoother decay in the probability density

function of the move-length distribution. Therefore, there are more long moves

(compared with the number of short moves) than in the Lévy case. Translated into

foraging movements, it implies that they visit more patches, probably because the

latter are small and dispersed. The GPD approach proposed by Bertrand et al.

(in review) provides a synoptic characterization of the observed movement through

two parameters describing the spatial range and the diffusive property. Those two

parameters constitute relevant metrics (1) as potential indicators of changes in the

spatial distribution of their prey and (2) for studying the variability of the spatial

behavior among species or among individuals with different personalities.

The GPD approach seems highly appealing because it contemplates a continuum

of distributions and can thus encompass a continuum of diffusive behaviors that can

be found in organisms’ movement. It also enhances the interpretation of foraging

strategies by providing a spatial range parameter in addition to the sinuosity param-

eter. These parameters will be later used in our work for characterizing fishermen

behavior (Chapter 6).

2.5 Identifying behavioral modes in movement

In theory, a movement path results from the succession of distinct types of behavior

or behavioral modes, e.g., standing, walking, running, searching for prey, eating a

prey. In practice, a movement path is sampled through a movement track, i.e., a

series of positions with either regular or irregular steps. If a movement track was

almost continuous, we could consider that the points of transition between behav-

ioral modes are always recorded. Under this assumption – implicit in most works

concerning behavioral modes – we define a segment as a succession of steps associ-

ated with a distinct behavioral mode.
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Figure 2.5: Generalized Pareto Distribution, a continuum from Exponential-Poisson
to Power-Lévy walk patterns. Parameter k of the GPD defines a continuum of
distributions from low-tailed (k < 0) to heavy-tailed (k > 0.5). We show typical
trajectories emerging from random realizations of those different move distributions,
including a Poisson-exponential motion (k = 0), a Brownian-Gaussian motion (k =
0.5) and a Lévy-power walk (k > 0.5) with k = 1. For each case, we also show in
the lower right inset the log-log plot of the corresponding move length probability
density function. Source: Bertrand et al. (in review)
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In order to study the behavioral modes in a movement track, two approaches

can be taken (Fig. 2.6). The first one consists in observing a spatial or a spatio-

temporal representation of the movement path, and associating certain observed

patterns (computed from the tracked observations) to distinct behavioral modes

(Fig. 2.7). The second one consists in defining the behavioral modes a priori and

then identifying which steps relate to each mode.

The recognition of behavioral modes without a priori defining them can be done

visually, but it is more objective to use analytical methods (Turchin, 1998). One

family of methods seeks to identify shifting points in the trajectories. For example,

Thiebault and Tremblay (2013) proposed a method where movement tracks are di-

vided into segments based on consistency in speeds and headings. They applied it

to seabird foraging tracks and compared the resulting segmentation with bird-borne

video cameras observations to evaluate if the segment limits matched changes in

behavior. Gurarie et al. (2009), alternatively, introduced a behavioral change point

analysis based on continuous stochastic processes for identifying structural changes.

They applied this method to northern fur seal trajectories and then gave ecological

interpretations for the identified behavioral units.
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Figure 2.7: Behavioral modes observed in a movement path. Source: Nathan et al.
(2008)

Another family of methods consists in: (1) defining a number of behavioral

modes (that could or could not change later), (2) fitting a model that infers those

modes based on the observed trajectory, and (3) interpreting the behavioral modes

relying on the parameters estimated and the related observed variables. Among the

most common models within this family are Hidden Markov models (HMMs), which

account for the temporal dynamics of the behavioral modes via transition probabil-

ities. In some studies, the number of states (behavioral modes) in the HMMs was

clear from the beginning (e.g., Breed et al., 2012; Langrock et al., 2012, for sea lions

and American bison, respectively) and the modeling results helped giving ecolog-

ical interpretations to those states. In other studies, the choice of the number of

states was not trivial. Roberts et al. (2004), for instance, analyzed bird navigation

behavior using a variational learning HMM, where the number of states was fixed

to 10, although they expected it to be lower. Since the modeling results showed

that only 3 of the 10 states were significantly visited, they concluded that the birds’

behavior was naturally organized into 3 states. Dean et al. (2012), on the other

hand, analyzed at-sea behavior of seabirds and fitted a series of candidate HMMs,

where each one had a different number of states (2-10). Then, the log-likelihood of

each model was computed, and a 3-state model was chosen based on a knee-point
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criterion.

Nonetheless, in a majority of studies, behavioral modes are defined a priori. In

almost all cases, a foraging or searching mode is included among them. Exploratory

techniques can be used for identifying structures or segments of the trajectory as-

sociated to one or several modes. Fauchald and Tveraa (2003) and Dragon et al.

(2012), for example, used first-passage time (FPT) for identifying area-restricted

search (and their associated steps) in antarctic seabird and elephant seal paths, re-

spectively. Fritz et al. (2003) used fractal analysis for identifying searching behavior

patterns in GPS tracks of albatrosses at several scales throughout their foraging

trips. Wavelet analyses have been used for identifying the multiple scales at which

behavioral modes occur. Fablet et al. (2013) used wavelet techniques for identifying

reorientation patterns associated with foraging bouts in seabird tracks. Polansky

et al. (2010) used them for studying changes in resting, feeding and moving behav-

ioral modes in lion and buffalo tracks; and Gaucherel (2011), for analyzing resting,

ballistic and searching behavioral modes of albatrosses.

Discriminative models, that state the classification of a step into a behavioral

mode independently of the other steps in the trajectory, have also been used.

Groundtruthed data, i.e. samples of tracks or positions with known behavioral

modes, available in some studies allowed for supervised learning. For example, in

Bertrand et al. (2008c) and Joo et al. (2011), steps associated with fishing behavior

were identified using artificial neural networks (ANNs) and validated with on-board

observers data. Martiskainen et al. (2009) obtained great performance from support

vector machines for recognizing various behavioral modes from accelerometry data

on cows, where the model outputs were contrasted with direct observations and

video recordings. In an unsupervised learning framework, Morales et al. (2005) used

ANNs and genetic algorithms for identifying eating, foraging and exploring behav-

ioral modes in simulated elk populations. Here, movement efficiency was assessed

by the effectiveness in avoiding predators.

Unsupervised two-state Hidden Markov models were commonly used for inferring

the behavioral modes, e.g., for classifying penguin dives into searching or foraging

(Hart et al., 2010), elephant seal steps into foraging or not foraging (Dragon et al.,

2012), turtleback steps into transiting or foraging (Jonsen et al., 2007), tuna steps in

searching or foraging (Patterson et al., 2009), or in foraging or migrating (Pedersen

et al., 2011). It should be noted that not all of these works used the same concept
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of ‘foraging’ (for some of them, it is just feeding, while for others, it involves search-

ing for prey). Two-state HMMs were also used for identifying types of movement

orientation in glass prawn movement (Mann et al., 2013b). Unsupervised HMMs

with more states were used for identifying several behavioral modes: e.g., bedding,

feeding and relocating within caribou and wolf tracks (Franke et al., 2004, 2006);

fishing, cruising and stopping within fishermen tracks (Peel and Good, 2011; Ver-

mard et al., 2010); and fishing, cruising and searching also within fishermen tracks

(Walker and Bez, 2010).

Groundtruthed data were used for validating the models when they were avail-

able. Franke et al. (2006) used data on wolf killing sites for validating two HMMs

inferring kill/not-kill modes and locally-active/bedding/relocating modes (two- and

three-state HMMs, respectively), by assessing if the killing sites were within a given

radius from positions identified as kill and locally-active. Walker and Bez (2010)

calibrated and validated HMMs for inferring fishing, cruising and searching modes

by comparing the inferred fishing modes with collected fishing observations. Lester

et al. (2005) used supervised hybrid HMM/discriminative models for identifying a

series of everyday activities performed by humans wearing multi-sensor boards. The

hybrid models were trained on an independent sample of video recorded data on the

volunteers; during the recorded sessions they were asked to do specific activities.

A less conventional but supervised approach proposed by Bai et al. (2012) con-

sisted in building a reference database of human behavioral modes and their observed

patterns (in this case, from an accelerometer), then comparing movelets (i.e., mov-

ing windows in the accelerometer time series) to the references using a distance

measure, and associating behavioral modes to the movelets so that the distances are

minimized.

All of these methods are valuable tools for analyzing movement, depending on

the goals motivating the behavioral mode identification (Fig. 2.6). It would be ap-

pealing to compare the efficiency of several methods for inferring behavioral modes,

using groundtruthed data for validation and comparison of the models. This issue

will be addressed in chapter 4, when comparing discriminative and Markovian mod-

els for inferring behavioral modes in fishermen movement.
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2.6 Movement in an ecological context

As stated in section 2.1, movement is not an isolated action from an individual. Ex-

ternal factors are important for understanding movement. In this section, we review

the works studying how environmental factors shape individuals’ movement through

modeling and descriptive frameworks. Then, we review the approaches adopted for

analyzing social behavior and collective movement.

Various studies have incorporated environmental covariates into their animal

movement models and evaluated the effect of those covariates in the movement pat-

terns. For example, Morales et al. (2004) used the type of habitat as a covariate for

inferring encamped and exploratory behavioral modes in elk movements. While the

animals encamped in open habitats, their exploration was not strongly associated

with any particular habitat type. Bestley et al. (2010) used several environmen-

tal covariates for inferring feeding behavior in tuna movement. Although feeding

mostly occurred in the coastal waters, tuna also showed a pattern of high forag-

ing success throughout their migratory range, providing evidence of opportunistic

feeding. Using a state-space model (SSM) with environmental covariates, Bestley

et al. (2012) showed that switches from directed to resident behavioral modes in ele-

phant seal movement were associated with cold water temperatures. In turn, Hanks

et al. (2011) used a velocity-based approach for modeling animal movement in space

and time that incorporates environmental variables. Applying it to northern fur

seal movement, they showed sex differentiation, with females exhibiting stronger re-

sponse to the environmental variables (sea surface temperature, Chlorophyll-A, and

net primary production).

Other works examined the association between movement patterns and envi-

ronmental conditions in a descriptive framework. Fritz et al. (2003), for example,

analyzed the relationships between the fractal dimension of albatrosses tracks at

several spatial scales, wind conditions, and distance to the continental shelf. A sig-

nificant association between the latter and the fractal dimension at one of the scales

was found. Pichegru et al. (2007) analyzed the foraging zones of Cape gannets

from 2 different islands (obtained from GPS and time-depth recorder data) and the

pelagic fish abundance (obtained from acoustic surveys). They found that gannets

from one of the islands foraged in an area that was closer to their island and had

higher sardine densities, which could have contributed to their growing population

trends; whereas other gannets foraged farther away and in low-abundance zones, and
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had a declining population. Jonsen et al. (2007) compared temperature and depth

conditions between transiting and foraging behavioral modes of leatherback tur-

tles; turtles transited in deeper and warmer waters than when foraging. Benhamou

(2007) showed via simulation that environments with patchy prey could generate

Lévy-like movements. Humphries et al. (2010), on the other hand, investigated the

horizontal tracks of various open-ocean predatory fish and found Lévy behavior to

be associated with less productive waters (sparse prey) and Brownian movements to

be associated with productive shelf or convergence-front habitats (abundant prey).

Wittemyer et al. (2008) used a spatio-temporal approach for analyzing the in-

terplays between individual and ecological (social rank, predation risk and seasonal

variation in resource abundance) characteristics. They tested hypotheses on whether

ecological conditions shaped autocorrelation patterns of step-length in elephant

movement, obtained from Fourier and wavelet analyses. They showed that auto-

correlation was weaker during the wet season, indicating that random movements

were more common in good ecological conditions. They also found that diurnal

movement correlation was more common with protected wildlife areas, and mul-

tiday movement correlations found among lower rank individuals were outside of

protected areas where predation risk was higher. Finally, they found that the ob-

served patterns were all related to the distribution of critical resources (i.e., forage

and water).

For studying collective movement, Polansky and Wittemyer (2011) presented

a Fourier and wavelet approach for analyzing pairwise movement patterns. They

applied it to step lengths in the movements of African elephants; the degrees of

movement synchrony found were consistent with the observed strength of the social

bonds in each pair. Freeman et al. (2011) studied the flights of pigeons released

alone and then in pairs. They found that, in the pairs, the one that showed the low-

est variability in their solo path (and hence memorized it best) became the leader,

and the other one, the follower.

Within the Lagrangian framework, several studies have addressed collective be-

havior modeling of animal movement, mostly inspired from self-propelled particles

(SSP; Vicsek et al., 1995) or in individual or agent based models (IBM or ABM;

Reynolds, 1987). In these models, a group (e.g. a swarm, school, flock or crowd)

is modeled by a collection of individuals (or particles) that move in a one, two or

three dimensional space. Each individual has a local interaction zone within which
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it responds to other individuals. The exact form of this interaction varies between

models, but typically, individuals are attracted to, aligned with and/or attracted to

other individuals within one or more different zones. This modeling approach has

been used in many applications, such as pedestrian motion trails in a park (Hel-

bing et al., 1997), human crowd stampedes (Helbing et al., 2000), locusts marching

movement (Buhl et al., 2006), bird flocks synchronized landing (Bhattacharya and

Vicsek, 2010); and mostly shoaling fish dynamics (see Lett and Mirabet, 2008, for

a review). In some works, video recording were used for confronting the simulation

results with real data (Lett and Mirabet, 2008).

Several other modeling approaches have been undertaken. For example, Herbert-

Read et al. (2011) used a neural network based learning algorithm for identifying

the factors responsible for fish speed and direction in shoals of mosquitofish. They

found that fish adapted their speed and heading primarily in response to their near-

est neighbor. Mann et al. (2013b) modeled the collective motion of glass prawns,

and used Bayesian model selection to show that the individual’s memory of its re-

cent interactions is key for determining its future direction choices; based on this

methodology, human clapping dynamics were also modeled (Mann et al., 2013a). A

framework for modeling collective animal behavior is presented by Sumpter et al.

(2012), focusing on the interplay between what happens on the individual level and

the behavior of the group as a whole. Examples of this approach are given, based

on past works of the coauthors. Quantitative model validation presents serious dif-

ficulties in collective behavioral modeling, mostly because of data unavailability:

tracking data on collective movement seems very hard to obtain for animals that

are not observed in laboratories or domesticated.

The works reviewed in this section highlight the role of environmental factors

and social interactions in movement. Still, few studies have addressed these issues.

The increasing amount of data in ecosystem monitoring and the methodological ad-

vances will allow for a better understanding of movement in an environmental and

social environment.

2.7 Fishermen movement

We now introduce the analysis of fishermen behavior based on their movement. The

implementation of Vessel Monitoring Systems in many industrial fisheries and their
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availability for research purposes has played a fundamental role for fishermen move-

ment analysis. We will provide a short description of VMS data in section 2.7.1.

Relying on the movement ecology framework introduced before, we will review the

existent studies characterizing fishermen behavior alone (section 2.7.2), then its re-

sponse to environmental conditions and social interactions (section 2.7.3).

It has been widely recognized that understanding the spatial behavior and strate-

gies of fishermen is key for fisheries science and management (Bertrand, 2005; Salas

and Gaertner, 2004; Smith and Wilen, 2003; Wilen, 2004). Indeed, fisheries sci-

ence is mostly motivated by management purposes. Management policies can act

upon the catches or the effort. Traditionally, effort has been more complicated to

monitor and so to control. For that reason, management has been mostly based on

catch limits (e.g. total allowable catches or individual vessel quotas). Thanks to

VMSs, fishermen can be monitored in almost real-time, with good spatial accuracy

and at relatively fine temporal resolutions. For fisheries management, VMS data

has been used for assessing the spatial distribution and dynamics of effort and thus

introducing management policies related to effort reduction. We will review the

management-centered works in section 2.7.4.

2.7.1 VMS data

A VMS is a real-time continuous tracking system of fishing vessel movements. VMSs

have been extensively implemented in dozens of industrial fisheries throughout the

world (Fig. 2.8) since the end of the nineties. Vessels participating in the VMS

programs carry a shipboard electronic equipment with a unique identifier. Most

shipboard units use satellite communications systems with an integrated Global

Positioning System that calculates the unit’s position and sends a data report to

shoreside users. The standard data report includes the VMS unit’s unique iden-

tifier, date, time and position in latitude and longitude (FAO, 2013a). Initially

implemented for law enforcement and security purposes, VMSs provide high quality

and low cost information on fishing vessels’ trajectories. They have enabled great

progress in the understanding of the spatial mechanisms involved in the fisheries

dynamics mainly because: (1) these observations are collected continuously and at

good temporal resolution (1 record per hour on average); (2) the information is

independent of fishermen’s declarations; and (3) the nature of the data allows ap-

plying a movement ecology framework to the analysis of fishermen’s spatial behavior



26 Chapter 2. Movement ecology and fishermen

(Bertrand et al., 2007).

Figure 2.8: Non-exhaustive list of the main VMS in the world, synthesized from
Smith (2001), FAO (www.fao.org) and wikipedia (www.wikipedia.com/xx). Only
the VMS programs with publicly available number of vessels are shown (the figures
are shown in the map). Source: Bertrand et al. (in review)

On one hand, never before has spatialized information on fishermen, at that

time resolution been available for entire fleets. On the other hand, concerning the

spatio-temporal representation of the movement path, the average sampling rate of

1 hour can only provide a coarse approximation to the real movement path. Linear

interpolations of the fishing trajectories tend to underestimate the real traveled dis-

tances and thus their associated speeds (Palmer, 2008). For the same reason, the

estimation of trip sinuosity indicators is not accurate neither. Sinuosity is rarely

computed as a fishing trip descriptor; we will see in the next section how the speed

underestimations can affect fishermen movement analysis.

2.7.2 Fishermen movement analysis

Classifications of movement paths into groups has been an issue addressed by Russo

et al. (2011b), for identifying métiers based on vessel gear and fishing trip charac-

teristics computed from VMS data (e.g., speed, turning angle, distance to the coast,
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duration of the trip) using artificial neural networks. Several clustering methods for

métier classification were evaluated by Deporte et al. (2012), but they did not rely

on movement features but rather on landing profiles for the classification.

A few studies have used random walk modeling for characterizing fishermen

movement. As explained in section 2.4, random walk modeling basically consists in

computing the lengths of the moves in the movement paths and modeling the tail

of the distribution of the move lengths. Moves are mostly computed by resampling

the positioning records, using turning angles for detecting points of changes in the

trajectories (Turchin, 1998). The existing applications of random walks correspond

to the Peruvian anchovy fishery. In this fishery, fishing trips usually last ∼ 24 hours.

Tracks with one positioning record per hour in average (i.e., the VMS data resolu-

tion) result in a small amount of moves. There are not enough move lengths for

modeling the tail of their distribution. Then, the approach taken by Bertrand et al.

(2007, 2005, in review) consists in characterizing not a movement path, but the

movement of a fisherman (or fishing vessel), modeling the move lengths correspond-

ing to a set of his movement paths by random walks. Under that approach, Bertrand

et al. (2007, 2005) fitted Lévy walks to fishermen move lengths and used the param-

eter of the tail of the distribution of the move lengths for characterizing the sinuosity

of the movement of each fishing vessel. Afterwards, Bertrand et al. (in review) fitted

a Generalized Pareto distribution to the vessels move lengths and found evidence

of more diffusive movement for the steel-hulled fleet than for the wooden-hulled fleet.

Behavioral modes in fishermen trajectories are defined as activities within the

fishing trips, like fishing, cruising, searching or drifting. The vast majority of VMS-

related works focused on determining which positioning records were associated with

fishing operations (Bertrand, 2013). Most of those works used a simple criterion on

speed (see Lee et al., 2010, for an overall review on speed criteria for identifying

fishing behavioral modes). However, speed is computed on distances and time, and

as stated before, distances may be underestimated because of the relatively low res-

olution of the data, especially during sinuous segments (trajectories tend to be more

sinuous in fishing zones); hence, speed may also be underestimated. Thus, determin-

ing fishing activity solely on a speed criterion increases the risk of false positives and

thus of overestimation of the number of fishing sets. Only two works have quantified

these estimation errors. Palmer and Wigley (2009) found false positive rates of 32%

and 69% for bottom otter trawl and scallop dredge fishing activity, respectively, in

the northeastern USA. Bertrand et al. (2008c) found an overestimation of 182% of
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the number of fishing sets for the purse-seine anchovy fishery in a northern region

in Peru. Those rates may explain why high percentages of the total of VMS records

are identified as fishing sets: 47%, 79% and 80% for UK VMS corresponding to 2005

(Witt and Godley, 2007), 2006 and 2007 (Lee et al., 2010).

More accurate estimations were obtained using artificial neural networks with

time, speed, acceleration and turning angles as input variables for detecting fishing

set positions in the Peruvian purse-seine anchovy fishery (Bertrand et al., 2008c; Joo

et al., 2011). Aiming at minimizing the over/under estimation error, the calibrated

neural networks gave 1% of average overestimation (compared to the 182% obtained

with the speed threshold) and 24% of average false positives; the very small overesti-

mation error implies that the false positives could be regarded as positioning errors

of the fishing sets.

Other studies aimed at inferring the sequence of behavioral modes of each fish-

ing trip, i.e., from a set of a priori defined behavioral modes, identifying which

one most likely corresponds to each movement step. Inferred behavioral modes

were mainly fishing, searching, cruising and staying still, for French pelagic trawlers

(Vermard et al., 2010), French tropical tuna purse-seiners (Walker and Bez, 2010),

Australian trawlers (Peel and Good, 2011). Hidden Markov models were used for

inferring the sequences of behavioral modes in all three scientific papers. Among

them, Walker and Bez (2010) were the only ones to partially validate their results

with groundtruthed data. Partially, because (1) the groundtruth was only available

for the fishing mode, which impeached validation of the inference of the other ac-

tivities; and (2) the groundtruthed tracks were simultaneously used for calibration

and validation, so validation was not independent.

Concerning random walk modeling, this work is also situated in the Peruvian

anchovy fishery context, and thus constrained by the number of moves within each

fishing track. Notwithstanding, at a fishing season scale, the high number of moves

per vessel does allow a random walk characterization; using the GPD approach in

Bertrand et al. (in review) we extract the two parameters described above as addi-

tional indicators of fishermen behavior for chapter 6.

Regarding behavioral mode inference, it has been mostly done using speed-based

criteria (for fishing behavior), but artificial neural networks and Hidden Markov

models have shown to be appealing alternatives. Validation of the methods has
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been regarded in very few works. It should be given more importance to model vali-

dation, especially since the results are later used for management purposes. We will

address these issues in chapter 4, when comparing discriminative and Markovian

models for inferring behavioral modes within fishing trips.

2.7.3 Fishermen movement in an ecological context

As for every other predator, the movement of fishermen responds to ecological fac-

tors. Movement tracks collected on fishermen are conditioned by prey and en-

vironmental conditions, and that has been the focus of a few studies. Bertrand

et al. (2005) fitted Lévy random walks to move-length distributions of tracks cor-

responding to 3 anchovy purse-seiners. The super-diffusive behavior of fishermen –

represented by a parameter from the power-law tail distribution – was significantly

correlated with the fractal dimension of fish distribution, showing that fishermen

spatial behavior reflected to some extent the spatial distribution of fish. Bertrand

et al. (2008c) compared the spatial distributions of fishing sets from anchovy purse-

seiners and fish acoustic biomass; they found significant correlations in distance

to the coast and a clustering index. Bertrand et al. (2008b) described the effects

of large scale oceanic forcing, via Kelvin waves, in all components of the coastal

Humboldt Current system, from oceanography to fishermen. They showed that the

arrival of a downwelling Kelvin wave generates a contraction in the extent of cold

coastal waters, a contraction in the spatial distribution of anchovy and a deepening

of their aggregations, triggering less diffusive fishermen trips (i.e., a Brownian-like

motion indicating the low effort for finding fish and catching it, since anchovy is

closer to the coast and highly aggregated).

Sharples et al. (2013a) analyzed the spatial patterns of fishing activity in the

Celtic Sea and described how oceanographic characteristics (i.e., tidal currents, ba-

timetry, sea surface temperature and chlorophyll) led to consistent patchiness in

the fishing effort. The pattern of fishing showed the most heavily fished area was

along the edge of the continental shelf, where a strong internal tide mixes nutrients

towards the sea surface, increasing primary productivity and altering the species

structure of the phytoplankton community. Sharples et al. (2013b) produced a syn-

optic description of the ecological processes in a Celtic Sea area, where the dynamics

of productivity are highly influenced by internal Lee waves over a shelf sea bank.

They showed that the dynamics of these internal waves strongly influence the pri-
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mary production in the area, fish distribution and the distribution of a bird species,

storm petrel. VMS data were analyzed for assessing whether the fishing vessels

showed preferences in fishing grounds in that area. The results showed that while

some marine organisms are able to quickly adapt their distribution to the spatial

structures generated in the water masses by internal Lee waves, the commercial fish-

ing vessels respond to a larger spatial scale, since they were concentrated generally

around large fish aggregations, but with no particular preference for areas where

intense Lee waves locally increase primary production.

The interactions between fishermen and their repercussions on their own spatial

and temporal behavior has been analyzed to some extent. Horta and Defeo (2012)

analyzed the spatial overlap between industrial and artisanal fleets targeting a same

species (whitemouth croaker) in coastal Uruguay. The overlap negatively affected

the artisanal fleet which was less competitive, so management recommendations for

limiting overlapping were given. Poos and Rijnsdorp (2007) studied the dynamics

of the Dutch beam trawl fleet spatial distribution when one fishing area was tem-

porally closed, using a logbook dataset. They focused on the effect of interference

competition and proposed a mean crowding index for measuring the strength of

fishermen interference competition. In the first weeks after the area closure, catch

rates significantly lowered, which corresponded to a strong interference competition

between trawlers. They also showed that the fishermen with specialization in the

closed area experienced lower catch rates than fishers with previous experience in

the open areas, and were more likely to stop fishing during the closed period.

Rijnsdorp et al. (2011) studied the dynamics of exploitation of fishing grounds

based on data of individual tows for a sample of the Dutch beam trawl fleet. In

conformity with the marginal value theory, the exploitation of a fishing ground con-

tinued until the capture rate became lower than a certain threshold, called the giving

up catch rate. However, the observed value of the giving up catch rate was inferior

to the predicted value. This difference could have been explained by the bias intro-

duced in fishermen behavior by an individual quota system. Poos et al. (2010b) used

optimal foraging theory to examine the spatial behavior of beam trawlers observed

by VMS. They studied the causes of the divergence between the observed spatial

distribution of the fleet and the ones estimated by the ideal free distribution theory

(Fretwell and Lucas, 1969). The results revealed potential segregation between two

fleet segments with unequal competitors through spatial segregation in prey species,

price differences, and interference competition through prey depression. In the ab-
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sence of interference competition, the segregation between fleets showed dependence

on differences in the distribution and prices of the prey species, combined with dif-

ferences in catch efficiency.

Several other works, that are presented in the following section, analyze the re-

lationships between fishermen, fish and the environment. However, most of them

focused on the impacts of fishermen on the ecosystem; only the studies mentioned in

this section focused on how fishermen respond to variation in ecological conditions.

In this work (Chapter 6), we use a descriptive framework to assess how coastal

environmental processes and prey conditions shape fishermen behavior. Although

collective behavior is not addressed here, it should be considered in future works.

2.7.4 Contributions to fisheries management

Control and surveillance

Introduction of VMS in fisheries was mainly motivated by surveillance and control

purposes: for monitoring foreign fleets in national exclusive economic zones (e.g.,

Japanese fisheries in Australian waters, international fleets off South Pacific coun-

tries), monitoring fishing activities in environmentally sensitive areas (e.g., Great

Barrier Reef, Australia), monitoring the exclusion of industrial fishing fleet activi-

ties within the first 5 mn from the coast (e.g., Peruvian anchovy fishery), etc. This

monitoring is mostly focused on the identification of illegal captures.

Willems et al. (2009) proposed a visualization method for other surveillance pur-

poses: to know where significant maritime areas, like highways and anchoring zones

are located. This visualization is based on density fields which are derived from

convolution of the dynamic vessel positions with a kernel. A combination of two

fields, with a large and small kernel, provides overview and detail. A large kernel

provides an overview of area usage revealing vessel highways. In turn, a small kernel

shows details of speed variations of individual vessels, highlighting anchoring zones

where multiple vessels stop. Using GPS data on vessels off the Dutch coast, the

authors investigated traffic patterns in different weather conditions (smooth and

stormy weather), characterizing movement behavior in anchor zones and highways

(highways with slow movers and highways with normal functioning were identified

as well). Vessel surveillance would be greatly benefited from this tool.
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Besides, control and surveillance, fishermen movement data has proven to be

very useful for many management purposes.

Impact of trawling activity in the marine environment

Trawling activity has been seriously questioned because of its impact on the marine

environment (Jones, 1992), directly (scraping the substrate, sediment resuspension,

destruction of benthos) and indirectly (post-fishing mortality and long-term impacts

on benthic communities). For that reason, a large number of studies used spatio-

temporal behavior of fishermen for assessing impacts of the fisheries on the sea

bottom. Various works elaborated indicators of fishing effort (e.g., Gerritsen et al.,

2013; Hiddink et al., 2006a,b; Jennings and Lee, 2012; Jennings et al., 2012; Marrs

et al., 2002; Piet et al., 2000; Piet and Hintzen, 2012; Stelzenmuller et al., 2008;

Vinther and Eero, 2013), involving the number of times or hours a trawl passed

through defined cell grids or areas in the map, the areas not fished, or the areas

fished at specific intensities. In this respect, Piet and Quirijns (2009) showed that

the absolute amount of effort and the choice of spatial and temporal scales determine

the perception of fishing impact both in terms of the spatial distribution of fishing

effort as well as estimated fishing-induced mortality. The accuracy of VMS data for

estimating the distribution of fishing effort and impact was studied by Deng et al.

(2005) and Skaar et al. (2011); they showed that for accurate estimation of fishing

indicators at small spatial scales, fine resolution of VMS data are required. Jennings

and Lee (2012) assessed how the choice of criteria for defining fishing grounds can

influence their size, shape and location.

Information on benthic communities and environment has been used in several

works to account for the fisheries impact in an ecological perspective. Hiddink et al.

(2006a) proposed a size-based model to predict the effects of trawling on benthic

biomass, production and species richness in grid maps throughout the main fish-

ing grounds exploited by the North Sea beam trawl fleet. The model incorporates

trawling effort computed on VMS data and environmental parameters of habitat

type (sediment, depth, shear stress, chlorophyll-a). Hiddink et al. (2006b) developed

indicators accounting for the interaction between trawling pressure and capacity for

recovery of the benthic biomass. The size-based model from Hiddink et al. (2006a)

was used for predicting the recovery time of these communities after trawling. They

proposed a state indicator measuring the proportion of an area where benthic in-

vertebrate biomass is greater than 90% of pristine benthic biomass; and a pressure
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indicator measuring the proportion of the area where trawling frequency is suffi-

ciently high to prevent biomass from reaching the 90% of pristine benthic biomass.

Hiddink et al. (2007) developed a method for assessing the sensitivity of seabed habi-

tats to bottom-trawling disturbance; the method also takes account of the effects of

natural disturbance on habitat characteristics. Vinther and Eero (2013) developed

an approach for obtaining proxies for changes in fishing mortality (based on effort

information), spatial modeling of species distributions (based on trawl surveys) and

a retention probability available in the literature.

For comparing the impact of the main human activities operating in England and

Wales waters, Eastwood et al. (2007) provided an assessment of their direct phys-

ical pressure on the seabed. Pressure was estimated as the spatial extent of each

activity. Among all activities, demersal trawling had the greatest associated pres-

sure, ranging from 5% to 21%. Regarding large scale and long term impacts, Tillin

et al. (2006) examined the impact of chronic trawling on the functional composition

of benthic invertebrate communities, using information of fishing effort from VMS

data, and information on the life history and ecological function traits of sampled

taxa. Univariate and multivariate analyses were used for examining changes in the

distribution of traits over gradients of trawling intensity. They demonstrated that

chronic bottom trawling can lead to large scale shifts in the functional composition

of benthic communities, with likely effects on the functioning of coastal ecosystems.

Complementary effort indicators

VMS-based effort indicators have been proposed in different fisheries. For example,

Mullowney and Dawe (2009) developed a VMS-based fishing catch per unit of effort

index (kg/fishing hour) and an index of efficiency (number of pot hauls per hour) in

a snow crab fishery. They showed that VMS-based fishing effort and CPUE (catch

per unit of effort) indices can be interpreted to provide reliable complementary or

alternative indices to logbooks for assessment of fishery performance in the fishery.

Furthermore, Bez et al. (2011) introduced several effort indicators for studying and

quantifying the spatial dynamic of the tropical tuna purse seine fishing activity. For

each activity at sea (searching, fishing and cruising), they computed: time spent

(in each activity), spatial extension, spatial range (computed from variogram), Gini

index (for homogeneity in time spent by activity by pixel) and a collocation index

(as a measure of spatial correlation).
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Evaluation of management measures and spatial marine planning

Fishermen movement analysis has also been used for evaluating the effects of differ-

ent management measures. Hiddink et al. (2006a) developed a model for predicting

the effects of area closures and effort reduction on the biomass, production and

species richness on benthic comunities. Dinmore et al. (2003) studied the changes

in the spatial distribution of effort of the North Sea trawl fleet when seasonal area

closures occur. They showed that repeated seasonal closures could produce a more

homogeneous or less ‘patchy’ distribution of fishing effort, when the effort moves

into previously unfished areas. The authors therefore concluded that the repeated

use of these seasonal closures could lead to a negative effect of increased trawling

activity on the total production of benthic invertebrates in the North Sea. Gerritsen

et al. (2012) investigated the effect of a seasonal closures in several regions with high

cod CPUE on the number of catches and landings of cod by the Irish demersal otter

trawl fish. Due to the joint analysis of VMS and logbooks, two areas are identified

where effort is relatively low, but cod bycatch is high. Fishing closure in those areas

was recommended, since it would demand relocating between 3% and 9% of the

effort, while cod bycatch would be reduced in 8%-22%.

The effects of real-time closures (RTCs) has also been evaluated using data on

fishermen movement. Holmes et al. (2011) presented the RTC system applied in

Scotland for reducing cod capture. VMS data served as an input for deciding the

area closures. They also used VMS data analysis to show that compliance with these

closed areas was good, although the decline in catches of cod was not as large as

expected. Needle and Catarino (2011) used the VMS data from Scottish vessels for

constructing space-dependent relative cod-importance indexes (RCII), which were

then used to determine whether the areas to which vessels move have a higher or a

lower RCII, and how far away they move when an RTC is activated. They showed

that the RCII of the areas vessels moved to tended to be lower than that of the

closed ones, and that vessels traveled farther when moving away from a closure than

when moving back after reopening. It evidenced that RTCs may impact beneficially

on cod mortality.

Marine protected areas (MPAs) are a common type of spatial closure given

by management programs for protecting sensitive marine habitats and associated

fauna. Spatial information on the fisheries is key for MPA design and efficiency

(Costello et al., 2010). For improving spatial planning, various works analyzed the

changes in fishing effort that would generate potential MPAs. For a local fishing in
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Solomon Islands, Aswani and Lauer (2006) use a geographical information system

(GIS) database to incorporate socio-spatial information, such as indigenous knowl-

edge and artisanal fishing data, along with biophysical and other information to

assist in MPA design. Converting peoples’ knowledge and socio-ecological behavior

into geo-spatial data allowed researchers to formulate hypotheses regarding human

responses to inter- and intra-habitat variability, along with other marine ecological

processes, and helped in the designing and implementation of resource management

strategies in a cost-effective and participatory way.

Shephard et al. (2012) combined fisheries-independent survey and fine-scale VMS

data, for modeling elasmobranch biomass as a function of environmental variables

and local fishing effort. They evidenced that spatial heterogeneity in fishing ef-

fort can lead to a temporally stable mosaic of fish and unfished areas that would

generate de facto refugees for elasmobranches in the Celtic Sea. Such refugee may

represent sites where establishment of formal MPAs would result in minimal fishing

effort displacement. Nonetheless, potential MPAs in other zones of the Celtic Sea

could cause effort to shift to the de facto refugee zones which would make them stop

being refugee zones. Therefore, they advised to consider setting an MPA in the zone.

Jennings et al. (2012) used VMS data for measuring fishery footprints and as-

sessing habitat sensitivity and trawling impacts in an area of the North Sea where

marine spatial planning was underway and a network of MPAs had been proposed.

Interannual and fleet-related differences in the distribution and intensity of trawling

activity, driven by location choice and fisheries regulations, had more influence on

overall trawling impacts than the exclusion of beam trawlers from a proposed net-

work of MPAss. They concluded that direct management of trawling footprints has

potential to support the achievement of environmental objectives efficiently and at

low costs. Maiorano et al. (2009) presented a systematic conservation planning in the

Mediterranean context for the identification of no-take MPAs. They used trawl sur-

vey data for obtaining information on juveniles and spawners of commercial species,

and VMS data for information on the spatial distribution of the fleet. Their frame-

work aimed at optimizing both the conservation of species and the economic activity.

For assessing the consequences of a MPA imposed for over a decade, Murawski

et al. (2005) evaluated the spatial distribution of otter trawl fishing effort and catches

off North East USA. The positions of the vessels were documented by logbooks and

VMS. The high resolution of the VMS data allowed observing CPUE gradients



36 Chapter 2. Movement ecology and fishermen

around the MPA, suggesting a positive impact of the MPAs. The analyses con-

firmed that large-scale year-round closed areas affect the abundance and spatial

distribution of some target species, and the allocation of trawling effort. For eval-

uating potential impacts of spatial planning measures, Fock (2008) and Pedersen

et al. (2009) presented methods for mapping fishing effort and catches combining

VMS and logbook data. They allowed exploring the spatial and temporal variability

of fishing activities in the German Exclusive Economic Zone.

Ecosystem approach to fisheries

The availability of VMS data has opened great perspectives for an ecosystem ap-

proach to fisheries (EAF; Browman and Stergiou, 2004; Garcia and Cochrane, 2005).

The impact of the fisheries in the marine environment and most of all, on the marine

organisms, has been extensively studied, as we have shown in the examples above.

An important issue that is not always considered is the interaction of fishermen with

other marine top predators. Catry et al. (2013); Granadeiro et al. (2013, 2011) stud-

ied the spatial and temporal extent of the interactions between individual albatross

and fishing vessels, using VMS of the Falklands fishing fleet, seabird GPS tracking,

blood and feather samples on the birds. In general, they found little time-space

overlap between the vessels and the birds; although a few individuals repeatedly

visited the vessels. The isotopic analyses from blood and feather samples suggested

no specialization of individual albatrosses with regard to fisheries. However, because

of the presence of a few individuals that follow the vessels, the authors recommended

management actions leading to a reduction of discards for reducing the risk of inci-

dental mortality.

Sonntag et al. (2012) addressed the issue of bird bycatch in set-nets in the south-

ern Baltic Sea. They used a bird-counting database and VMS records from the

same period of time (2000-2008). A spatial overlap between set-net fishing activities

and diving birds was used to indicate potential conflicts between the two. Conflict

showed to be higher during winter and spring in coastal waters and around shallow

offshore grounds. Local bycatch studies validated the usefulness of their approach,

which can provide a valuable tool for conservation purposes. Torres et al. (2011)

used GPS tracking data from foraging trips of albatross within sub-Antarctic New

Zealand and VMS-based fishing effort distribution data for quantifying fine-scale

overlap between individual albatrosses and individual vessels and characterizing be-

havioral changes in albatrosses when they are associated with the vessels. High
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variability in the foraging destinations of albatrosses and in association rates with

the fishing activity was found. Foraging behavior patterns of albatrosses relative

to commercial fishing activity revealed that birds moved in straighter paths and

at slower speeds when overlapping a squid trawler than when foraging naturally,

probably for maintaining the vessel’s heading and pace. The fact that albatrosses

adjusted their foraging behavior when associated with fishing vessels, suggested that

the ecological consequences of fishing activities on seabirds that interact with fishing

gear, may extend beyond the direct effects of mortality and injury.

Votier et al. (2010) investigated the behavioral responses of gannets to trawlers

using GPS tracking on gannets and VMS data on the trawlers near a UK island

where the colonies of gannets were located. Analysis of conventional diet samples,

as well as stable isotope ratios of carbon and nitrogen in blood evidenced marked in-

dividual differences in the proportion of fishery discards in the diet; although fisheries

waste did not form the majority of prey for breeding gannets, it formed a signifi-

cant component of the diet for certain individuals. They also showed that gannets

adjust at-sea path tortuosity and flight speed in relation to fishing vessel positions,

with evidence indicating that the gannets flied towards the vessels. Overall, linking

GPS tracking data with VMS data indicated that fishing vessels shaped the at-sea

foraging behavior of seabirds. The authors highlighted the potential of VMS data

for improving ecosystem monitoring and management. Some of the monitoring and

management measures they state that should be prioritized are: identifying vessels

with particularly high rates of scavenger co-occurrence and therefore entanglement

risk, giving priority to conservation policies of bycatch reduction, and ensuring that

scavenging species have sufficient food to meet their energetic requirements in the

absence of fishery waste, to reduce possible indirect ecosystem effects.

Tew Kai et al. (2013) studied the foraging behavior of Cape gannets breeding

off the coast of South Africa using high-resolution GPS tracking, in relation to (1)

pelagic fish availability assessed through acoustic surveys, and (2) VMS-based fish-

ing effort by pelagic purse-seiners that compete with seabirds for fish and demersal

trawlers that discharge fish waste. They found substantial inter-annual variability

in spatial use by breeding gannets, which was driven primarily by pelagic fish avail-

ability. At the mesoscale, birds and purse seiners exploited similar marine areas, but

no fine-scale dependence of birds on purse seiners was detected. It was also found

that birds only sought trawlers when pelagic fish availability was low, suggesting

reversible dependency upon fishery waste. They thus highlighted the necessity to
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promote sustainable fishing allowing the restoration of pelagic fish stocks.

Focused on competition for prey, Bertrand et al. (2012) studied Peruvian booby

and Peruvian anchovy fishery interactions using tracking data on seabirds and VMS

data; both the fishing season and the tracking experiment with the birds started on

the same day. The authors show that if in the early days of the fishing season the

birds and vessels share the same areas, birds then dissociate from the vessels and

undertake trips increasingly distant from the colony. This increase in foraging effort

was significantly related to the growing quantity of anchovy removals by the fishery

(from landings data). Daily removals by the fishery were at least 100 times greater

than the daily anchovy requirement of the seabird colonies. The authors concluded

that the overcapacity of the fleet during the year of study could have led to local

depletion of anchovies, forcing the birds to increase their foraging effort in more

remote areas for compensating. They recommended the implementation of areas of

temporary fishing closures during the core of breeding seasons and around the main

colonies.

Other studies (Bertrand et al., 2008b; Sharples et al., 2013a,b), using VMS data

for elaborating integrated analyses of marine ecosystems and therefore contributing

to the EAFs, were already described in section 2.7.3.

2.7.5 Remaining challenges

Vessel monitoring system data has been available for management and scientific pur-

poses in many fisheries from the beginning of the 2000s. In more than one decade,

the use of this relatively high resolution data (∼ 1 position per hour) on fishermen

movement for fisheries science and management has progressively increased. Sec-

tions 2.7.2, 2.7.3, 2.7.4 intended to account for those advances. However, several

challenges remain; they will be addressed here in the form of questions.

• Can we trust fishing set identification? And what is the best method

of inferring behavioral modes in fishermen trips? We have shown that

the highest interest in VMS data is the identification of fishing sets, for assess-

ing the distribution of effective fishing effort in a second stage. Speed thresh-

olds are still the most common criteria for classifying VMS records into fishing

or not fishing positions (Lee et al., 2010). The few works that quantified the
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false positive and overestimation errors (Bertrand et al., 2008c; Palmer, 2008)

demonstrated that the speed criteria seriously overestimates the number of

fishing sets. Many of the multiple indicators used in fisheries management are

based on those classifications (e.g., for estimating trawling impact in seabeds)

and may thus be biased. Hence, it is important to: (1) account for inference

errors, and (2) choose a method that gives the best inference performance.

Discriminative (e.g. artificial neural networks) and Markovian models (e.g.

HMM), can be used for inferring not only fishing behavior, but several other

types of behavioral modes occurring throughout the fishing trips. Indeed, other

behavioral modes, such as searching, provide information of a certain degree

of foraging effort. In this work (Chapter 4), we address this challenge by com-

paring several discriminative and Markovian models (both using supervised

learning) and using independent groundtruthed data for their validation. We

evaluate how well do the models infer three behavioral modes: fishing, search-

ing and cruising.

• Can fishermen trips be classified in strategic groups? The analyses

of fishermen movement have rarely addressed the heterogeneity in movement

and how this heterogeneity could obey to different gear, strategies or external

factors. Russo et al. (2011b) showed that different métiers could be reflected in

different distributions of speeds and turning angles, among others. Bertrand

et al. (in review) showed that different segments of the Peruvian fishing fleet

differ in their diffusive behavior. In this work (Chapter 5), we examine the

heterogeneity in fishing trips based on a series of descriptors (e.g. duration,

distance traveled, time spent in each behavioral mode) and their association

in different strategic groups.

• How do ecosystem scenarios condition fishermen movement and be-

havior? Fishermen do not only impact the ecosystem; they are also con-

ditioned by it. Evidence of the similarities in fishermen foraging behavior

to those of other animals has been already shown (Bertrand et al., 2007).

However, there are very few works addressing the influence of the ecological

conditions on fishermen; instead, most works account only for the changes in

fishermen behavior due to changes in management policies, as if it was the only

factor affecting fishermen behavior. Instead, within an ecosystem approach to

fisheries, it would seem natural to account for the effect of changes in ecosys-

tem in fishermen behavior.
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In this work (Chapter 6), we analyze and quantify the associations between

fishermen, their prey and the environment; and describe how these two fish

and coastal environmental conditions shape the movement of Peruvian an-

chovy purse-seiners.

• Does the spatial distribution of fishermen effort reflect the spatial

distribution of fish? Thanks to VMS data, spatial distribution of effort is

being intensively studied. However, and even though effort in commonly used

as a proxy of abundance, the spatial associations between fishermen effort

and fish distribution and abundance has been assessed in very few works. In

Chapter 7, we analyze the co-variation and co-occurrence between fishermen

spatial behavior and the spatial distribution of acoustic biomass of Peruvian

anchovy.

• Should descriptors of fishermen behavior be used as effort indica-

tors? As we described in section 2.7.4, many indicators of effort have been

elaborated using VMS data. However, they are only based on fishing sets.

Results from movement analysis have only been rarely incorporated into fish-

eries management. The work of Bez et al. (2011) may constitute one of the

only examples using spatial and temporal information on behavioral modes

for effort indicators. Random walk related works allow accounting for diffu-

sive behavior and explored spatial range. But, among all possibilities, which

indicators should be preferred? What insights could they offer for fisheries

management? Although these questions have not been extensively studied in

this work, we do offer important clues when showing in Chapter 6 the potential

of some fishermen descriptors as ecosystem indicators, when examining their

response to ecosystem scenarios.

• How can fishermen collective behavior be studied? How to ana-

lyze competition and association? VMSs have enabled access to rich data

on fishermen movement (i.e., numerous trajectories from numerous individ-

uals foraging at the same time), allowing to account for collective foraging

behavior in a free environment. Despite first approaches that evaluate in-

terference competition (Poos et al., 2010a; Poos and Rijnsdorp, 2007), many

issues about collective behavior remain unresolved. For example, how to dis-

tinguish between competition and association? At which scales are association

and competition patterns observed? Observing the collective dynamics at a

spatial scale (i.e., defining grid cells) would depend on the spatial scale (the

size of the cells) and temporal scales fixed. It could be considered to use the
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approaches investigated in animal movement. While wavelet analyses would

be difficult to use since large time series are needed, the exploration of ap-

proaches based on self-propelled particles would be appealing. This challenge

is not addressed in this work, however it should be examined in future works.

Collective behavior analysis is not only attractive for behavioral science; it is

also important for fisheries (for example, for evaluating collective responses to

area closures or effort reduction policies).

• How do fishermen interact with other marine top predators? The

EAF involves the interaction of fishermen with other marine top predators.

The studies described in section 2.7.4 represent the first attempts for assess-

ing fishermen impact in seabird diet, foraging behavior and by-catch mortal-

ity, using spatialized data on fishermen. However, an intensive monitoring of

seabirds and marine mammals, and a deeper knowledge on fishermen impact

in their behavior and mortality should be achieved. This challenge is beyond

the scope of this work. Nonetheless, it is part of a collaborative work within

the TOPINEME (Top predators as indicators of exploited marine ecosystem

dynamics) project.
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Chapter 3

The northern Humboldt Current

system: components and dynamics

“No es la última ola con su salado peso / la que tritura costas y produce / la paz

de arena que rodea el mundo: / es el central volumen de la fuerza, / la potencia

extendida de las aguas, / la inmóvil soledad llena de vidas. / Tiempo, tal vez, o

copa acumulada / de todo movimiento, unidad pura / que no selló la muerte, verde

v́ıscera / de la totalidad abrasadora.”

– Pablo Neruda (El Gran Océano)

3.1 Introduction

Four major upwelling systems border the west sides of the continents, comprising

the eastern parts of the oceans: the Humboldt Current system in the South Pacific,

the Canary Current system in the North Atlantic, the Benguela Current system

in the South Atlantic and the California Current system in the North Pacific (Fig.

3.1). Those four Eastern Boundary Upwelling systems (EBUS) represent ∼ 0.3%

of the world surface oceans (Carr and Kearns, 2003) but produce about 20% of

the world’s fish catches, contributing significantly to securing food and livelihood

strategies in many developing countries (Fréon et al., 2009). In these regions, regular

trade winds combined with the earth’s rotation generate coastal upwelling, bringing

cold, nutrient-rich water from the deep ocean (∼ 200-300 m) to the surface. The

arrival of this water to the sunlight-exposed surface layer fuels primary production,

which supports a highly productive food web (Fréon et al., 2009). It also contributes

very significantly to gas exchanges between the ocean and the atmosphere, particu-

larly CO2, which makes EBUS particularly sensitive to climate change (Chavez and

43
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Messié, 2009).

Figure 3.1: Chlorophyll-a concentration from SeaWiFS for the 1998-2007 period
and EBUSs location arbitrarily delimited by the 200 nm offshore limit and latitu-
dinal extensions including seasonal upwelling zones (courtesy of H. Demarcq, IRD,
France). Source: Fréon et al. (2009)

The Humboldt ecosystem is the EBUS with the strongest interannual and in-

terdecadal variability that affects its biological and abiotic components, ecosystem

processes, and fisheries yield, in addition to the variability occurring at seasonal

scales (Montecino and Lange, 2009). The Humboldt Current system has the weak-

est upwelling winds of all EBUS, and the greatest average upwelled volume. It

also has the shallowest, more oxygen-depleted and more extended Oxygen Mini-

mum Zone (Chavez and Messié, 2009, Fig. 3.2). As stated by Fréon et al. (2009),

despite these apparently detrimental effects, and the fact that this ecosystem does

not have the highest levels of primary production, it provides the highest contri-

bution to fish production, mainly due to a single species: the Peruvian anchovy

or anchoveta (Engraulis ringens), making the Peruvian anchovy fishery the world’s

largest monospecific fishery (average annual catch of 6 809 492 tonnes between 2000

and 2011; FAO, 2013b).

In this chapter we will briefly describe the main features of the Humboldt Current

system, with a stronger focus in the Northern Humboldt Current system (NHCS),

its oceanography, biology and fishery.
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Figure 3.2: Northsouth section of oxygen in the Pacific and Atlantic Oceans following
the coast 1000 km offshore of the eastern boundary. Location of the 10°-latitudinal
bands chosen for comparison within each EBUS are shown in black. Data are from
the World Ocean Atlas 2005 (Garcia et al., 2006a,b). Source: Chavez and Messié
(2009)

3.2 Oceanographic context

3.2.1 South Pacific gyre and oceanic circulation

Like other subtropical regions of the world, the South Pacific Ocean is surmounted

by an area of high atmospheric pressures: the South Pacific subtropical anticyclone,

which generates surface winds rotating counterclockwise around the South Pacific

(Fig. 3.3a). This wind system carries the surface waters by friction, giving rise to

an anticyclonic ocean circulation, known as the South Pacific subtropical gyre (Fig.

3.3b).

Its eastern flank comprises the equatorward Peru Oceanic Current (POC). In the

offshore ocean off the Ecuadorian and Peruvian coasts, this current feeds the South

Equatorial Current (SEC) that flows westward in the nearsurface layers (Fig. 3.4a).

The SEC is forced by the permanent easterlies that pile up surface water toward

the western equatorial Pacific creating a zonal eastward pressure gradient force that

drives, in subsurface layers, the eastward flowing Equatorial Undercurrent (EUC)

centered along the equator (Fig. 3.4b) and reaching the Galapagos Islands near

90°W. East of the archipelago, the EUC separates into two branches, one branch

flows southeastward to reach the Peruvian coast at ∼ 5°S while the other branch

remains trapped along the equator.

Below the thermocline and further South, are found the primary and secondary

Southern Subsurface Countercurrents (SSCCs), also referred to as Tsuchiya jets,

that flow eastward and enter the NHCS along nominal latitudes of ∼ 5°S and ∼ 7°S,

respectively. Near the Peruvian coast, the dominant alongshore equatorward winds

and the cyclonic wind-stress curl lead to an intense upwelling characterized by an
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(a) Surface winds
(m.s−1)

(b) Surface circulation
by OSCAR (m.s−1)

(c) Surface temperature
by MODIS (m.s−1)

(d) Chlorophyll concentration
by MODIS (mg.m−3)

Figure 3.3: Main average characteristics of the Pacific Ocean. Source: Chaigneau
(2013).
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alongshore narrow strip of cold (Fig. 3.4b, color shading) and highly productive wa-

ter and a current system composed of equatorward surface and mainly poleward sub-

surface flows. The equatorward surface circulation is composed of the Peru Coastal

Current (PCC) that is mainly wind-driven, but also reinforced, through geostrophic

adjustment, by the cross-frontal temperature (and density) gradient due to the up-

welling (Fig. 3.4b, color shading). The subsurface poleward circulation is mainly

composed of the Peru-Chile Undercurrent (PCUC) along the Peruvian continental

shelf and slope (Fig. 3.4b) and a weaker secondary poleward flow, the Peru-Chile

Countercurrent (PCCC), that flows south of 7°S and at 80°W - 85°W (Fig. 3.4b).

North of 5°S, a near-surface coastal current flowing from Ecuador to Peru and as-

sociated with the surfacing of the EUC, has been suggested (Collins et al., 2013;

Lukas, 1986). This poleward surface-trapped current is called the Ecuador-Peru

Coastal Current (EPCC; Chaigneau et al., 2013, Fig. 3.4a). However close to the

Ecuadorian coast, a northwestward oriented surface current (the Coastal Ecuado-

rian Current, not shown in Fig. 3.4a) can also take place (Allauca, 1990; Collins

et al., 2013). In the deep layer at 500 m depth, the average circulation is mainly

northward, due to a relatively deep vertical extent of the POC in the offshore ocean

and a deep equatorward near-coastal current, the Chile-Peru Deep Coastal Current

(CPDCC; Chaigneau et al., 2013, Fig. 3.4b), which flows below the PCUC and

transports relatively fresh and cold Antarctic Intermediate Water northward.

Among the different currents that compose the NHCS, the PCUC is a key element

because it advects seawater property anomalies from equatorial to extra-tropical re-

gions and it plays a major role in the functioning of the NHCS ecosystem. The

PCUC, that has been tracked along the continental shelf and upper slope from

∼ 5°S off Peru to ∼ 45°S off Chile, carries a relatively warm, salty, nutrient-rich,

oxygen-poor and weakly stratified water-mass of near-equatorial origin (Silva and

Neshyba, 1979; Tsuchiya and Talley, 1998). This water-mass, the Equatorial Sub-

surface Water (ESSW), flows southward into the PCUC and is the main source of

the coastal upwelled waters in NHCS, promoting an intense primary productivity

(Chavez et al., 2008). Although the origin of the PCUC is still subject of scien-

tific debate, it has been recognized that its main sources are the EUC and the two

branches of the SSCC (Czeschel et al., 2011; Montes et al., 2010).

The presence of cold coastal waters at the surface has several consequences

(Chaigneau, 2013). From a climate point of view, it stabilizes the overlying atmo-

spheric layers and prevents the formation of convective systems and thus severely
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(a) Sea surface salinity
and surface currents.

(b) Sea surface temperature
and subsurface currents.

(c) Surface water masses

Figure 3.4: Schematic distribution of: the main currents, sea sea surface salin-
ity and temperature (a and b); and the main water masses in the surface layers
off Peru (c). The approximate locations for main upwelling areas for nutrient-rich
waters are indicated with an ‘X’. Currents: POC, Peru Oceanic Current; SEC,
South Equatorial Current; EUC, Equatorial Undercurrent; pSSCCs and sSSCCs,
primary and secondary Southern Subsurface Countercurrents, respectively; PCC,
Peru Coastal Current; PCUC, Peru-Chile Undercurrent; PCCC, Peru-Chile Coun-
tercurrent; EPCC, Ecuador-Peru Coastal Current. Source: Chaigneau et al. (2013)
(figures a and b) and Ayón et al. (2008a) (figure c).
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limits the precipitations. This coastal phenomenon reinforces the synoptic effect

related to the subsidence of the subtropical anticyclone and thus the coasts of the

north of Chile and south of Peru are among the driest in the world. From an ocean

view, the surface temperatures observed in the coastal areas of the Humboldt Cur-

rent System are the coldest in the world for similar latitudes; along the coast off

Peru, they are more than 10°C lower than in west side of the Pacific Ocean (Fig.

3.3c). The strong temperature gradient between the coastal and the offshore areas

increases currents forced by winds, giving rise to a relatively intense coastal surface

current flowing to the north. From an ecological point of view, cold coastal waters

rich in nutrients, by contact with the solar radiation in the euphotic layer, allow

the development of an intense primary production (Fig. 3.3d). This primary pro-

duction is the first link in the marine food chain that makes the Humboldt Current

system the most productive region in the world. Thus, the marine resources play

an ecologically, economically and socially vital role in the countries bordering this

area. Finally, from a biogeochemical point of view, microbial degradation of organic

matter associated with the strong biotic production consumes a large amount of dis-

solved oxygen. This reduces the oxygen concentration in subsurface waters which

are already poorly ventilated, and gives rise to the presence of a thick anoxic layer

that is close to the ocean surface (Fuenzalida et al., 2009; Stramma et al., 2010).

This area, almost devoid of oxygen, is known as the Oxygen Minimum Zone (OMZ)

and is a major source of greenhouse gas emissions (CO2 and N2O; Paulmier et al.,

2008) . The limit between the oxygenated surface layer and the OMZ, also forms a

strong vertical barrier – the oxycline – that most living organisms cannot cross and

thus restricts the vertical extension of the ecosystem in this region (Bertrand et al.,

2010, 2011).

3.2.2 Water masses in the surface layers

Regarding water masses (Table 3.1; Fig. 3.4c), a wide region off the Peruvian coast is

dominated by Cold Coastal Waters (CCW), which are strongly influenced by coastal

upwelling (upwelled waters originate from the PCUC; Echevin et al., 2004a,b). The

oligotrophic Subtropical Surface Waters (SSW) are located offshore the CCW. The

Tropical Surface Waters (TSW) are found North of the Equator and characterized

by higher temperatures and lower salinities than the other water masses present off

Peru. The Equatorial Surface Waters (ESW) are found between the CCW and the

STW.
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(a) Normal conditions

(b) El Niño conditions (c) La Niña conditions

Figure 3.5: Pacific Ocean - atmosphere interactions in the equatorial region in nor-
mal (a), El Niño (b) and La Niña (c) conditions. The numbers in each subplot
correspond to different components in the interactions: (1) winds, (2) atmospheric
convection and rain, (3) thermocline. The horizontal arrows are related to sea level
variations while the vertical arrows are related to thermocline depth variations.
Source: AVISO (2013)
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Table 3.1: Main characteristics of the water masses present in the Humboldt Current
system

Water mass Salinity Temperature Ecological Type

Cold Coastal
[34.80; 35.05]

[15◦; 17◦] in winter coastal
Water (CCW) [15◦; 19◦] in summer productive

Subtropical Surface
> 35.10

[17◦; 25◦] in winter oceanic
Water (SSW) [20◦; 25◦] in summer oligotrophic

Tropical Surface
[34.00; 34.80]

[20◦; 26◦] in winter
mesotrophic

Water (TSW) [21◦; 26◦] in summer

Equatorial Surface
< 34.00

> 23◦ in winter oligotrophic
Water (ESW) > 26◦ in summer

Source: Bertrand et al. (2004a)

3.2.3 Oxygen minimum zone

Oceans include vast areas called oxygen minimum zones where subsurface layers

are depleted in dissolved oxygen (DO; Helly and Levin, 2004), resulting from the

sinking and decay of surface-derived high primary production and poor ventilation.

The OMZ forms a barrier to some animals, concentrating living resources near the

surface. At the other end of the spectrum different forms of marine life have adapted

to this harsh environment, some utilizing it as a refuge from predation. The OMZ

also affects global nutrient budgets, as nitrate instead of oxygen is used by bacteria

as a terminal electron acceptor (Chavez et al., 2008).

Among the EBUS, waters off Peru are the oldest and least ventilated (Chavez

and Messié, 2009). The OMZ reaches a maximum thickness of > 600 m, which

extends about 1000 km into the open ocean, between 5°S and 13°S. The OMZ is the

shallowest there, reaching depths of 150 m (Fig. 3.6 Fuenzalida et al., 2009).

3.3 Biological context

3.3.1 Primary production

The distribution of phytoplankton biomass roughly follows a decreasing gradient

from the coast towards offshore (biovolumes larger than 3 ml.m−3 inshore) . Pri-
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Figure 3.6: Oxygen minimum zone thickness and upper boundary in the Humboldt
Current System. Thickness is color-coded according to the color bar on the right-
hand side of the figure; units are in m. The upper boundary is shown in black
contour lines with 50 m intervals. Source: Fuenzalida et al. (2009)
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mary production is higher in austral summer and lower in austral winter (Echevin

et al., 2008).

Concerning phytoplankton communities, diatoms (microplankton) dominate the

coastal upwelling zones, while dinoflagellates and coccolithophores (nanoplankton)

dominate offshore in less turbulent zones (Sánchez Ramirez, 2000). Because of their

marked preferences in terms of temperature and salinity, some species of dinoflag-

ellates are commonly used as biological indicators of water masses (Arntz et al.,

1996; Delgado et al., 2001; Sánchez Ramirez, 2000): Protoperidinium obtusum for

cold coastal waters; Ceratium breve, Ornithocercus steinii, Ornithocercus thumii and

Amphisolenia Thrinax for equatorial surface waters; and Ceratium praelongum and

Ceratium incisum for sub-tropical surface waters.

3.3.2 Secondary production

The distribution of zooplankton biomass may be classified in three regional groups

(Santander, 1981): (1) a continental shelf group dominated by Acartia tonsa and

Centropages brachiatus ; (2) a continental slope group characterized by siphonophores,

bivalves, foraminifera and radiolaria; (3) and a species-rich oceanic group. The high-

est zooplankton abundances and biomasses have been often found between 4°S - 6°S
and 14°S - 16°S, where continental shelves are narrow. Species composition changes

with distance from the shore. Both species composition and biomass are highly vari-

able at several time scales (seasonal, inter-annual and multi-decadal scales; Ayón

et al., 2008a).

Ballón et al. (2011) developed an acoustic method for estimating macrozooplank-

ton biomass in the NHCS and estimated a biomass two to five times higher than

previous estimates. The high biomass estimated is consistent with the trophic ecol-

ogy findings indicating that forage fish mainly consume macrozooplankton (Espinoza

and Bertrand, 2008; Espinoza et al., 2009); it is also consistent with the current hy-

potheses (intermediate wind intensity, near-equator location and El Niño) explaining

the NHCS high fish production (Bakun and Weeks, 2008; Chavez et al., 2008).
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3.3.3 Higher trophic levels

Anchovy

Anchovies are from the order of Clupeiformes and from the family Engraulidae. In

Peru, there are two species, Anchoa nasus or anchoveta blanca, and Engraulis rin-

gens or anchoveta (Fig. 3.7). Engraulis ringens, which we will henceforth refer to as

anchovy, is the main fishing resource (average annual catch of 6 809 492 tonnes be-

tween 2000 and 2011, compared to the 15 632 tonnes of Anchoa nasus and the 7 381

681 of marine fishes in general for the same period of time; FAO, 2013b). Anchovy

has a maximum life span of 4 years and may reach a maximum size of 20 cm. It

experiences a fast growth and an early maturity (at 1 year and measuring approxi-

mately 12 cm). Therefore, individuals of less than 12 cm are considered as juveniles

by the fisheries. Anchovy mainly feeds on zooplankton, although it may also prey

on phytoplankton (they represent ∼ 98% and 2% of the food energy, respectively;

Espinoza and Bertrand, 2008). According to Espinoza and Bertrand (2008), the

fact that anchovy is able to feed from several trophic levels, choosing energetically

advantageous food types, and to adjust its foraging period and duration to prey

availability, represents an evolved adaptive strategy.

Figure 3.7: Peruvian anchovy or Engraulis ringens.

Anchovy is also flexible for reproduction, since they are able to spawn all year-

round, with peaks between July and October, and at the whole latitudinal range off

Peru (Bouchon et al., 2010a). Other adaptive strategies include the ability to track

and concentrate in refuge areas when conditions are adverse (Bertrand et al., 2004a)

and to spatially distribute its population over a large temperature range (Bertrand

et al., 2004a; Gutiérrez et al., 2008).

As stated by Espinoza and Bertrand (2008), these combined characteristics may

explain the ‘anchovy paradox: how a fish which (i) performs very small migrations

and cannot escape adverse conditions, (ii) is mainly distributed in dense surface

aggregations and is thus highly accessible to predators (fish, cephalopods, birds,

mammals and fishers), and (iii) is very slow in its avoidance reactions to predators

(Gerlotto et al., 2006), can achieve such enormous biomass in a relatively short time.
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In addition, Bertrand et al. (2011) hypothesized that oxycline depth also plays a

important role for anchovy: a shallow oxycline provides a large offshore low oxygen

habitat to anchovy, allowing it access to the high concentrations of macrozooplank-

ton at the shelf break and reducing competition for food and predation by ‘expelling’

species that cannot survive in low oxygen conditions.

Other marine species

Sardine (Sardinops sargax ) has been very abundant and supported an important

part of the pelagic fishery during the 1980s (Alheit and Ñiquen, 2004), but it has

been almost completely absent from the NHCS since the early 2000s (Gutiérrez

et al., 2007). The crash of the sardine population can be attributed to the syner-

getic effect of trophic structure and oxygen; these environmental effects were most

likely aggravated by overfishing (Bertrand et al., 2011, 2004a).

Other pelagic species with important presence in the NHCS are chub mackerel

(Scomber japonicus) and jack mackerel (Trachurus murphyi). Finally, three other

species are likely to be encountered in large quantities particularly during population

explosions: pelagic squat lobster (Pleuroncodes monodon), jumbo squid (Dosidicus

gigas) and mesopelagic Panama lightfish (Vinciguerria lucetia).

Top predators

The top predators other than the jumbo squid, include fishermen, seabirds and

pinnipeds. Pinnipeds are mainly South American sea lions (Otaria flavescens)

and South American fur seals (Arctocephalus australis). The main populations of

seabirds producing guano are the Peruvian booby (Sula variegata), Guanay Cor-

morant (Phalacrocorax bougainvillii) and less abundant Peruvian Pelican (Pelecanus

thagus). They have shown remarkable levels of population, reaching approximately

25 million individuals in the 1950s. They differ in their foraging strategies. Pelicans

forage mainly at night and seize prey close to the sea surface using a sit-and-wait

strategy (Zavalaga et al., 2011). Peruvian boobies have good flying skills (thus few

constraints for horizontal displacement and more exploration capability), but do not

dive deep (∼ 5-10 m). By contrast, cormorants rely more on group strategies for

locating fish aggregations, and on their excellent diving skills (> 60 m; Weimerskirch

et al., 2012).
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3.4 Multiple scale dynamics

The Humboldt Current system is subject to bottom-up forcing at seasonal, inter-

annual, multi-decadal, centennial and higher scales. The time scales are associated

with proportional length scales (Mann and Lazier, 2006, Fig. 3.8). In this section,

we briefly describe the main features at inter-annual and seasonal scales.

Figure 3.8: Stommel diagram of spatial and temporal scales of marine ecology dy-
namics and sources of data. Source: Kaiser (2005)

3.4.1 Centennial and multi-decadal variability

Large scale variability (∼ 20000 last years) in terms of environmental conditions

and fish abundance proxy have been recently studied (Salvatteci, 2012; Salvatteci

et al., 2012). Both components of the ecosystem presented very high variability

at centennial and millennial scales. During the little ice age, there was little pro-

ductivity; that shifted ∼ 1820 into better productivity conditions. Then, since ca.
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1900, anchovy has reached its highest levels of productivity in this 20000 years.

The high levels of anchovy productivity have been maintained except for the 1975-

1995 time-period. In general, anchovy modulation appears to be strongly linked

to primary productivity and oxygen. Moreover, the period of time where the fish-

ery has been developed seems to be of exceptional abundance at the millennial scale.

The Pacific decadal oscillation (PDO) is a long-term ocean/atmosphere fluctua-

tion of the Pacific Ocean. It has been described as an analog climatic phenomenon

of El Niño Southern Oscillation (ENSO), but with longer duration: 20 to 30 years.

During cooler periods, called La Vieja, the eastern Pacific exhibits a lower sea level

slope and shallower thermocline, increasing the nutrient supply and productivity.

This seems to favor the anchovy population (Chavez et al., 2003), probably as a re-

sult of the expansion of the CCW (Bertrand et al., 2004a; Swartzman et al., 2008).

During warmer periods, however, the thermocline deepens, the upwelling weakens

and the productivity decreases, so that the range of habitat favorable to anchovy is

dramatically reduced while the habitat favorable to sardine increases and spreads

towards the continental shelf (Bertrand et al., 2004a). However, this alternation in

the abundance of anchovy and sardine has only been observed in the fishing records,

covering only one cycle. When looking at longer records, such as paleo-fish scales

from sediments, this alternation seems to occur only occasionally (Gutierrez et al.,

2009; Valdes et al., 2008).

3.4.2 Inter-annual variability

The El Niño Southern Oscillation (ENSO) phenomenon is due to a periodic instabil-

ity of the ocean-atmosphere dynamics in the Ocean Pacific basin. The frequency of

ENSO is irregular and varies depending on the SST anomalies in the eastern equa-

torial Pacific or the Central Pacific (Eastern Pacific El Niño and Modoki El Niño,

respectively Dewitte et al., 2012). El Niño and La Niña events represent opposite

cold and warm phases of the ENSO cycle, respectively. Extreme El Niño events

have caused devastating floods in the East Pacific and droughts in the West Pacific.

El Niño is Spanish for ‘The Child’, which refers to Jesus, because El Niño events

near South America are usually noticed around Christmas.

Eastern Pacific El Niño conditions are generated by downwelling Kelvin Waves

(KWs) that deepen the thermocline, making the coastal upwelling inefficient in
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terms of nutrient enrichment, as the upwelled waters are warm and low in nutrients

(Barber and Chavez, 1983, Fig. 3.5b). Conversely, La Niña conditions are generated

by upwelling KWs that raise the thermocline and allow coastal upwelling to bring

cold and nutrient-rich water towards the surface, making the cold coastal water to

expand (Fig. 3.5c).

La Niña and, most of all, El Niño events condition the spatial organization of

living organisms by modifying the volume of their favorable habitat. Under El

Niño conditions, in the short term (∼ 0-3 months), the extent of cold and nutrient-

rich waters (CCW) is reduced and sea surface temperature increases in the coastal

domain. With these changes, anchovy tends to distribute closer to the coast, re-

maining in the CCW (Bertrand et al., 2004a; Swartzman et al., 2008, Fig. 3.9), and

deeper in the water column beneath the warm and less productive surface waters

(Arntz et al., 1996). Under these conditions, anchovy are highly concentrated in

space (Gutiérrez et al., 2007) and fishermen make lower catches and briefer trips

(Bertrand et al., 2008b). In the long term, however, it has been suggested that

El Niño events contribute to maintaining the high fish production of the system

by favoring fast-growing fish species like anchovy, which take advantage of the low

predation pressure and rapidly increase their population and dominate the system

(Bakun and Weeks, 2008)

Figure 3.9: Water masses and anchovy distribution in cold and warm conditions.
Source: S. Bertrand (pers.comm.)

The southern oscillation index (SOI) is a measure of the large-scale fluctuation

air pressure occurring between the western and eastern tropical Pacific. It is de-

signed to measure the strength and phase of the Southern Oscillation. The index is

calculated based on the difference in air pressure between Tahiti (French Polynesia)

and Darwin (Australia). A strong negative index indicates an El Niño event while

a positive index reveals a La Niña event (Fig.3.10).
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Figure 3.10: Southern Oscillation Index (SOI). Source: NOAA

3.4.3 Seasonal variability

In the Humboldt Current system, the upwelling is present all year round, but it

varies in intensity between seasons. Seasonal fluctuations are also observed in other

environmental variables such as the wind intensity, mixed layer depth, light, water

masses, mesoscale activity, thermocline and so on. Although the highest upwelling

intensity and nutrient supply occur during austral winter as a result of a higher wind

intensity (Bakun and Mendelssohn, 1989), the system’s maximum primary produc-

tion occurs in spring (Echevin et al., 2008; Thomas et al., 2001) when a shallower

mixed layer increases both the nutrient concentration and the light availability to

phytoplankton (Echevin et al., 2008).

3.5 Anchovy fishery context

3.5.1 History: the race for fish

The modern Peruvian fishery was developed during the 1940s and 1950s on species

like bonito (Sarda chilensis chilensis) and tuna (mainly Thunnus albacares). It was
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driven by the high demand for the liver oil of these species in the US market during

World War II and later the Korean War (Chavez et al., 2008). The anchovy fishery

as well as the fishmeal production started in the 1950s (Aranda, 2009). In 1954, the

Consejo de Investigaciones Hidrobiológicas (CIH) was created for coordinating hy-

drobiological studies with the goal of improving the use and sustainability of living

marine resources. In 1959, the Instituto de Investigaciones de los Recursos Marinos

(IREMAR) was created with programs dealing with oceanography, fisheries biology,

biology of whales, fishery economics and fishery technology. Both entities merged

in the Instituto del Mar del Perú (IMARPE) in 1964, which continues to conduct

research on the NHCS and its fisheries today.

During the 1960s the fishing fleet grew steadily (Laws, 1997). The anchovy fish-

ery continued to grow during the 1960s to a peak harvest of 12 million tonnes per

year in 1970 accounting for 20% of the world catch (Chavez et al., 2008). In 1972,

the industry was hit by a particularly strong El Niño. This phenomenon together

with overfishing produced the collapse of anchovy (Hilborn and Walters, 1992). As a

consequence, the military government decided to nationalize the industry. In 1973,

the state-owned company Pesca-Peru, decided to reduce the fishing and processing

capacity and to forbid the building or renewal of fishing vessels (Laws, 1997). At

that time, some boats targeted the sardine resource, other underexploited species

like jack mackerel and horse mackerel, and the remains of the anchovy stock (Freón

et al., 2008).

In 1975, the fleet was privatized, while plants remained under state control.

The anchovy stock started giving signs of recovery in 1981, but was hit again by

a devastating El Niño in 1982-83 (Hilborn and Walters, 1992). Consequently, the

population of anchovy was seriously depressed. While during El Niño 1972 and

El Niño 1982-83 the anchovy experienced strong collapses, the sardine population

and exploitation increased to become the most important pelagic fishery during the

1980s (Alheit and Ñiquen, 2004), reaching a peak of 3 million tonnes of landings in

1985 (Freón et al., 2008).

The favorable long-term environmental conditions (La Vieja; Chavez et al., 2003)

prevailing since the beginning of the 1990s, however, led to a significant increase in

anchovy abundance and catches during the 1990s. In contrast, sardine abundance

and catches gradually decreased during this period, maybe as a result of unfavor-

able conditions and overfishing (Bertrand et al., 2011, 2004a). A new administration
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introduced neo-liberal economic policies and processing plants were privatized be-

tween 1992 and 2001 (CIDEF, 2002). Due to new policies and the recovery of the

anchovy stock, the private sector found optimal conditions to invest in vessels and

plant modernization and construction. As a result, the pelagic fleet capacity expe-

rienced a fast expansion (Aguilar Ibarra et al., 2000). A strong El Niño occurred in

1997-98, but the anchovy experienced a rapid recovery; this event also marked the

collapse of the sardine stock which has not yet recovered (Bertrand et al., 2004a,

Fig. 3.11).

Figure 3.11: Landings of Peruvian pelagic fisheries 1950-2006. Source: PRODUCE
(taken from Aranda (2009)).

Until 1998, there had been a single type of fishing vessel, all with steel hull but

of different sizes ranging from 30 to 900 tonnes of holding capacity, mostly owned by

large fishing companies. In that year, the government passed the Law 26920 which

authorized owners of wooden vessels larger than 30m3 to join the pelagic industrial

fleet, increasing the pressure on anchovy. In the 2000s, the investment and capac-

ity increased, and annual landings of anchovy ranged from 5 to 9 millions tonnes

(Aranda, 2009; Freón et al., 2008, Fig. 3.11, 3.12). One of the most visible effects of

overcapacity on fishing activity was a reduction in the annual number of fishing days.

The fishing season of Peruvian anchovy decreased from ∼ 350 days in 1987 to ∼ 50

days in 2006 (Freón et al., 2008, Fig. 3.13). In June 2008, the government decided

to implement individual vessel quota allocations (IVQs) in the anchovy fishery. It

aimed at stopping the race for fish, without allowing the transferability of rights.
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The introduction of the IVQs had an immediate effect lengthening the annual fishing

season and reducing the total number of operating fishing vessels (Tveteras et al.,

2011, Fig. 3.14, 3.15).

Figure 3.12: Number of purse-seiners and factories in the Peruvian Pelagic fisheries
from 1950 to 2006. Source: Freón et al. (2008)

Figure 3.13: Holding capacity (HC) of the industrial fleet compared with the length
of the fishing season from 1987 to 2005. Source: Freón et al. (2008)

3.5.2 Characteristics of the pelagic industrial fleet

The fishery is mono-specific, since ∼ 95% of the catches consist in anchovy (Freón

et al., 2008). During the last decade, the number of operating vessels reached a peak

of ∼ 1200 vessels by day (Freón et al., 2008, Fig. 3.12). The purse-seiner fleet is
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Figure 3.14: Length of the first (a) and second (b) fishing seasons of each year from
2002 to 2012 (north-center region). Source: IMARPE

classified into two segments: the steel and the wooden fleet (Fig. 3.16). The former

comprises vessels mostly made of steel and larger than 120m3 of fish-hold capacity.

The wooden fleet is locally named the ‘Viking’ fleet, because of the shape of the

hull; it comprises vessels ranging from 30 to 119m3 of fish-hold capacity. In addition

to the industrial fishery, there is a growing artisanal fishery (Estrella Arellano and

Swartzman, 2010). Here we focus on the industrial fleet only. Due to the IVQ

system, the number of operating vessels from both segments of the industrial fleet

has been significantly reduced and may continue to do so (Fig. 3.15).

3.5.3 Fisheries economy

The fishery is the second sector of the Peruvian economy in terms of export rev-

enues (it generated more than US1 billion in export revenues in 2009; Tveteras

et al., 2011). It is an important source of employment and income for coastal areas

(Aranda, 2009). It employs approximately 18000 fishermen that earn an average

gross wage of US4500 per fishing season, working on average 4 months per year

(Aranda, 2009).

More than 99% of the anchovy landings of the fleet are processed into fishmeal

and fish oil; although in the last years, anchovy processing for human consump-

tion has started to take place (Freón et al., 2008). Peruvian fishmeal and fish oil
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Figure 3.15: Number of operating vessels per day during the first (a) and second
(b) fishing seasons of each year from 2002 to 2012 (north-center region). The red
bars correspond to the steel fleet and the blue bars to the wooden fleet. Source:
IMARPE

(a) Vessel from the steel fleet. (b) Vessel from the wooden fleet

Figure 3.16: Examples of fishing vessels. Source: On-board observers program from
IMARPE (left panel) and P. Fréon (right panel).
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(a) ‘Chata’ (b) ‘Chata’ transporting anchovy

Figure 3.17: Operating ‘Chata’. Source:
http://tecnicanaval.blogspot.fr/2012/06/actividad-en-chata-transporte-de.html

production represent 25% and 30% of the world production of fishmeal and fish

oil, respectively (IFFO, 2008). The industrial fleet supplies anchovy to 142 plants

distributed at 24 locations along the Peruvian coast (Arias Schreiber et al., 2011).

Each company works with its own ‘chatas’ (Fig. 3.17). A ‘chata’ consits in a float-

ing platform ∼ 20 m long, which supports a long pipeline that is used to transport

anchovy directly from a fishing vessel offshore to the factory. The largest fishing

companies simultaneously own fishing fleets and several fishmeal plants, located at

different sites along the coast (Table 3.2). The highest processing power concentrates

between latitudes 9°S and 11°S; though, in general, the distribution of processing

capacity of each of those companies enables them to adapt to drastic changes in the

distribution of anchovy fishing grounds (Arias Schreiber et al., 2011).

In 2008, 40 fishing companies with authorization for fishmeal reduction were

officially registered, of which seven were responsible for 68% of the total fishmeal

production (Bendezú, 2008). These most productive companies owned 281 fish-

ing vessels (equivalent to 54% of vessels holding capacity) and 72 processing fac-

tories (equivalent to 66% of the processing capacity; Bendezú, 2008). Stakehold-

ers, i.e., fishing companies and boat owners connected to fishmeal production, are

organized in fishing associations which are active in lobbying and information ex-

change with the Ministry of Production and the Working Group on Fisheries in the

Congress (Aranda, 2009). The fishing associations do not have a direct involvement

in decision-making but play an advisory role. The most representative fishing associ-

ation, for the large-scale sector, is the National Society of Fisheries which integrates

boat owners and vertically integrated companies. The wooden fleet is represented

by the National Association of Boat-owners of the Law 26920.
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Table 3.2: Latitudinal distribution of fishmeal processing capacity (tonnes/hour)
from the largest fishing companies along the Peruvian coast in 2010.
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oǵ
ıa

d
e

A
li
m

en
to

s
S
.A

.

C
or

p
or

ac
ió
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5°S 150 170 70 138 528 (9%)
6°S
7°S 352 259 60 80 180 931 (15%)
8°S
9°S 374 407 90 164 125 100 80 1340 (22%)
10°S 80 142 76 80 60 113 551 (9%)
11°S 391 80 134 80 202 120 100 1107 (18%)
12°S
13°S 249 100 40 178 80 120 767 (13%)
14°S
15°S 140 140 (2%)
16°S 141 145 80 366 (6%)
17°S 131 90 78 100 399 (7%)

Source: PRODUCE (taken from Arias Schreiber et al. (2011)).
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3.5.4 Fishery management

Management policies for this fishery are differentiated according to two regions. In

the north-center region of Peru (from the frontier with Ecuador at ∼ 3°S to 16°S),

where most of the landings take place, industrial fishing is forbidden within the first

5 nm from the coast. Until 2008, total landings were limited by a total allowable

catch (TAC). Once the TAC was reached, the Vice-Ministry of Fisheries ordered

the closure of the fishing season, banning not only anchovy fishing but also fishmeal

processing (Arias Schreiber et al., 2011). From 2009, an IVQ system was introduced

(Aranda, 2009). Under the TAC and now the IVQ system, effort is limited by fairly

long fishing bans, decided on the basis of daily monitoring of the environment, the

fish population and the fishery. In the southern region (from 16°S to the frontier

with Chile), coastal restrictions vary from 1.5 to 3 nm from the coast. Here, man-

agement is also adaptive and based on daily monitoring of the ecosystem. Until

early 2009, total landings in that area were not limited by a TAC and the fishery

was open almost the whole year. Since July 2009, an IVQ system, independent from

the one in the north-center region, was implemented.

In both regions, north-center and south, management is adaptive on short time

scales (Chavez et al., 2008). There is no mid-term management plan in operation

for the anchovy fishery, as it is the case in many other commercial fisheries in Peru

(e.g. demersal hake fishery since 2003, jumbo squid fishery, jack and chub mackerel

since 2001). This reflects an intention of the government to avoid the use of legal

instruments that could restrict or delay a rapid management decision process (Arias

Schreiber et al., 2011). Arias Schreiber et al. (2011) provide an example of rapid

management of the anchovy fishery through the provisional closure of landing har-

bors when juveniles account for more than 10% of the catches: IMARPE delivers a

report of high juvenile capture rates and the legal department of the Vice-Ministry

of fisheries draws up the ministerial resolution for closing the port one day after.

It is signed by the Minister of Production on that same day. The next day, the

resolution is published in the daily official Peruvian newspaper ‘El Peruano’. The

port is closed right after the resolution has been published, on the same day. Two

days elapsed from the delivery of IMARPE’s report to the port closure.
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3.5.5 Fishery monitoring

IMARPE is in charge of an intense ecosystem monitoring, within an ecosystem

approach to fisheries (Fig. 3.18). It comprises satellite information on environmen-

tal conditions (e.g. sea surface temperature, Chlorophyll-a and sea level anomaly,

among others) in daily and weekly resolutions. Fish population distribution and

biomass are monitored through scientific acoustic surveys (two to three times a

year). The fishing activity is supervised through landing statistics, Vessel Monitor-

ing System (VMS) and on-board observers reports.

Remote Sensing and Geographic Information System

Monitoring of worldwide and local oceanographic conditions are done by real-

time remote sensing of sea surface temperature, Chlorophyll-a, sea level anomaly,

salinity, surface current speed and bathymetry, among others. Maps of oceano-

graphic conditions are produced on daily, weekly, fortnightly and monthly bases.

Acoustic surveys

Since 1983, IMARPE has been conducting on average two acoustic surveys per

year for monitoring fish population distribution and biomass. In each survey, from

1 to 3 scientific vessels can participate at the same time, splitting the total survey

design among them. The surveys consist in parallel cross-shore transects of ∼ 100

nm long, with a ∼ 15 nm spacing. Simrad (kongsberg Maritime AS, Norway) scien-

tific echosounders working at several frequencies are used to estimate biomasses (see

Castillo et al., 2009; Gutiérrez et al., 2007; Simmonds et al., 2009). An extensive

midwater-trawl sampling completes the acoustic surveys for species identification.

The nautical-area-backscattering coefficient (NASC, in m2.mn−2), an index of fish

biomass (Simmonds and MacLennan, 2005), is recorded at each georeferenced ele-

mentary distance sampling unit (EDSU) of 1 nm. From NASC, indicators of biomass

and spatial occupation are computed. In addition to the acoustic observations, fish-

ing samples, water samples (Niskin bottles and CTD probes) and plankton (phyto-

plankton and zooplankton) samples are taken. Moreover, observations on seabirds

and mammals are also registered. The biomass assessment is carried out during the

survey and the final report is provided in the days following the end of the survey.

Eureka Operations
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Since 1966, Eureka operations have been conducted (Villanueva, 1972). Eureka

cruises are based on legal agreements by which the fishing companies allow IMARPE

to use their fleet as scientific platforms in order to monitor biological conditions and

anchovy stock in real time (Barange et al., 2009). Scientific and technical staff from

IMARPE are sent to the main fishing ports, from where anchovy vessels (between

25 and 50) cruise simultaneously to perform oceanographic sampling and carry out

experimental fishing, following a survey track with a couple of parallel cross-shore

transects of ∼ 100 nm long. For each Eureka operation, IMARPE elaborates a pro-

file for the fishing vessels; then, among the vessels that fit the profile, a selection is

made by lot. The cost of the cruises are completely covered by the fishing companies,

thus notably reducing not only governmental expenses but also the delays involved

in planning and implementing conventional large scale research cruises. The fishing

companies involved are allowed to process the anchovy catches obtained from the

experimental fishing to recover some of the associated financial costs.

Program of on-board observers

IMARPE runs a program of on-board observers for a sample of ∼ 25 vessels

(the number varies each fishing season depending on the available funding). They

are mostly concentrated in the anchovy fishery. Accepting observers on board is

not a legal obligation for fishing companies. The observer program is therefore run

on a voluntary basis by the vessels and relies on ‘gentlemen's agreements’ between

IMARPE and the fishery.

This program started in 1974, after the fishery collapsed in 1972-1973. In the

early 1980s, the observers program was discontinued until 1996. The program has

been continuously evolving, in order to improve the quality and quantity of the

information collected. From 1996 to 2007, observers mainly recorded in each fish-

ing trip: the location and time of departure and arrival; the location and time of

the different activities occurring during the trips (fishing, searching, cruising, drift-

ing, helping other vessels, and receiving or giving fish to other vessel); total catch;

observed cetaceans; and biological characteristics of fish samples from the catches.

From 2007, they also recorded: the fishing company, type of fleet, holding capac-

ity, cooling system, year of construction, vessel dimensions, net dimensions, engine,

echo-sounders, sonars, discarded catch, offered catch, received catch, criteria for

choosing the fishing zones, captain and years of experience, detection of top preda-
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tors during the trip (species, date-time, location, number, etc.), among others.

Data from ports and coastal laboratories

IMARPE has seven coastal laboratories and sampling points in all landing ports

of the industrial fleet. Daily samples from landings are taken for biological and size

structure analyses. In addition, fish processing plants provide the coastal laborato-

ries their daily records on supplying vessels and the quantities supplied.

Vessel monitoring system

A great source of information used by IMARPE for supervising the fishing ac-

tivity is the Vessel Monitoring System (VMS). Industrial purse-seiners are legally

obliged to use VMS tracking devices since 2000. In practice, while the steel fleet

was almost entirely covered with VMS by 2000, the coverage of the wooden fleet

has been much more gradual. Since 2000, vessel positions (±100 m of accuracy;

∼ 1 record per hour) for hundreds of thousands of fishing trips are thus available

for scientific purposes. VMS data has been used for characterizing fishermen move-

ment patterns (Bertrand et al., 2007; Joo et al., 2011), and their association with

fish spatial patterns (Bertrand et al., 2005, 2008c), other foragers (Bertrand et al.,

2012), and several ecosystem components (Bertrand et al., 2008b).
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Chapter 4

Hidden Markov models: the best

models for modeling behavioral

modes?

“Remember that all models are wrong; the practical question is how wrong do they

have to be to not be useful.”

– George Box (Empirical Model-Building and Response Surfaces)

This chapter addresses an important methodological issue in movement analysis:

how to identify the behavioral mode sequence associated with each movement path?

Here, the movement paths correspond to fishing trips, and have been reconstructed

from Vessel Monitoring System (VMS) data. The behavioral modes have been a pri-

ori defined: cruising, searching and fishing. We described in section 2.5 some of the

main approaches for inferring behavioral modes in animal and human movement.

Among the methods used in a priori defined behavioral modes, Markovian models,

discriminative models (e.g. artificial neural networks and support vector machines),

movelets and wavelets can be used for identifying multiple behavioral modes. How-

ever, large time series are needed for the two latter methods. As it is not the case,

we compare here Markovian (Hidden Semi-Markov and Markov models) and dis-

criminative models (random forests, artificial neural networks and support vector

machines) using a groundtruthed dataset.

In section 3.5.5, we described the tools used by IMARPE (Peruvian Marine Re-

search Institute or Instituto del Mar del Perú in Spanish) for monitoring the fishery.

VMS positioning records are available for dozens of thousands of anchovy fishing

trips per year. In turn, sequences of behavioral modes are observed for a sample

73
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(∼ 1%) of those trips from on-board observers data. From those two datasets, a

groundtruthed dataset, corresponding to one year (2008), was built (> 200 fishing

tracks with known behavioral modes). This dataset was used for comparing the

performance of the inference models. Then, after the best model was chosen, it was

used for (1) evaluating its performance with the groundtruthed dataset of all the

other years, and (2) inferring the unknown behavioral modes in the remaining 99%

of the fishing trips (2000-2009).

The chapter is presented under the form of a scientific article (Joo et al., 2013). It

presents the model performance and comparison in a general framework for foraging

movement, though applied to the Peruvian anchovy fishery. The only changes intro-

duced here in respect to the published version, are some additional results and less

description of the data, since it was already described in section 3.5.5 and appendix

A.

4.1 Introduction

Movement paths result from the interaction between the behavior of an organism

and the spatial structuring patterns of its environment (Bergman et al., 2000; John-

son et al., 1992; Nams, 1996; Nathan et al., 2008; With, 1994). Those paths result

from the succession of distinct types of behavioral modes (e.g., traveling from one

area to another, searching for cues or preys, pursuing and eating a prey), each one

associated with the fulfillment of a particular goal. The knowledge of these modes

provides rich information on the processes underlying movement, but they are not

directly accessible through the sole observation of the sequence of positions recorded

by GPS or other position-logging artifacts. The inference of the behavioral modes

from movement paths remains a challenging issue in the emerging field of movement

ecology (Patterson et al., 2008).

Hidden Markov models (HMMs) have become increasingly popular to address

this issue (for examples in classifying activities such as foraging, searching, encamp-

ing, cruising, migrating and bedding, see Bestley et al. (2010); Dean et al. (2012);

Franke et al. (2004, 2006); Hart et al. (2010); Jonsen et al. (2007); Langrock et al.

(2012); Patterson et al. (2009); Pedersen et al. (2011); Peel and Good (2011); Ver-

mard et al. (2010); Walker and Bez (2010); in navigation strategies, see Guilford

et al. (2004); Lau et al. (2006); Roberts et al. (2004); and in types of movement

orientation, see Mann et al. (2013b)). HMMs rely on probabilistic inference of the
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behavioral modes, stated as hidden states, from the in situ observed series. Those

series are typically sequences of positions or associated features such as distances,

speeds or turning angles along the movement paths (Langrock et al., 2012). The key

feature of HMMs is to account for the temporal dynamics of the behavioral modes,

mostly based on state transitions between steps (two consecutive positions define

a step). Such first-order HMMs comprise computationally efficient inference proce-

dures (Gimpel and Rudoy, 2008; Rabiner, 1989). However, it may be unrealistic to

consider that a forager takes a decision about changing its behavioral mode at each

step, and regardless of any behavior dating from more than one step back. In this

respect, hidden semi-Markov models (HSMMs), recently investigated in movement

ecology (Langrock et al., 2012), may be more appealing. While HMMs characterize

behavior at the step scale, HSMMs characterize behavior at the segment scale; a

segment is composed of consecutive steps associated with a same state. HSMMs do

account for transitions between consecutive but distinct states and for durations of

state segments corresponding to one behavioral mode.

For most living organisms studied in ecology, groundtruthed datasets – samples

of tracks or positions for which behavioral modes are known – are hardly avail-

able. Therefore, inference issues are generally stated within a non-supervised frame-

work. Furthermore, rigorous model validation (e.g. by cross-validation as in Hijmans

(2012); Tan et al. (2006)) cannot be performed. Model validation mainly relies on

some expert-driven evaluation of the ecological or behavioral plausibility of the be-

havioral modes inferred. Fishermen had long been the only foragers whose true

behavioral modes were available. Actually, on-board observers can provide direct

observations of the vessels’ activities during fishing trips, allowing for model valida-

tion (Walker and Bez, 2010).

In such supervised settings, Markovian models may be applied. Nevertheless,

alternative models may also be considered, particularly because Markovian models

are limited for handling multiple observed variables. Choosing and fitting the most

appropriate multivariate distribution may be delicate. A simplifying hypothesis is

commonly adopted to solve this issue: observed variables conditioned on states are

assumed mutually independent, so the multivariate distribution becomes the prod-

uct of the univariate conditional distributions of each variable. By contrast, discrim-

inative models, such as random forests (RFs), artificial neural networks (ANNs) and

support vector machines (SVMs), provide robust solutions for non-linear discrimi-

nation in high-dimensional spaces. They have been shown to be highly efficient for
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a wide range of applications (Byun and Lee, 2002; Cutler et al., 2007; Hastie et al.,

2009; Mountrakis et al., 2011; Zhang, 2000). Their availability in several softwares

without the need of strong computational skills makes them attractive for applica-

tions to ecological datasets (Crisci et al., 2012; Olden et al., 2008). This includes a

few studies dedicated to behavioral modes (Bertrand et al., 2008c; Joo et al., 2011;

Morales et al., 2005). This context of technological advances for data collection en-

ables a wide range of supervised models. Hence, evaluating and comparing models

accuracy for inferring behavioral modes becomes necessary.

Here, we examine the foraging movement of 50 Peruvian purse-seiners targeting

anchovy in 2008. More than 200 of their fishing trips were documented by a Vessel

Monitoring System (VMS) and their behavioral modes simultaneously recorded by

on-board observers. This unique and large groundtruthed dataset allows perform-

ing, via cross-validation, a comprehensive evaluation and comparison of Markovian

(HMMs and HSMMs) and discriminative models (random forests, artificial neural

networks and support vector machines) for inferring the behavioral modes taken

during fishing trips. We show that HSMMs provide the most accurate inference

of the behavioral modes with 80% of global accuracy. We also show via simulation

that this result could be greatly reinforced with position records of higher frequency.

Finally, we use HSMMs for inferring the associated behavioral modes in all the fish-

ing trips done by the Peruvian anchovy fishing fleet from 2000 to 2009 (more than

300000 fishing trips).

4.2 Materials and methods

VMS positions (±100m of accuracy; ∼ 1 record per hour) from the whole Peruvian

industrial fishing fleet (> 1000 vessels) are available since 2000. Although most

records are given according to one-hour intervals, some irregularities (e.g. 0.17,

0.99, 1.2) seldom occur. Since there is no straightforward optimal interpolation

method for these cases (Langrock et al., 2012), we work with the records as they

are. Therefore, the considered VMS data consist in tracks (i.e., series of positions)

with non-regular steps. For each VMS track, several observed variables are com-

puted at each step: speed (sp), heading (θ), changes of speed and turning angles

between the previous and the current step (∆sp−1 and ∆θ−1) and between the cur-

rent and the next step (∆sp+1 and ∆θ+1).



4.2 Materials and methods 77

Figure 4.1: Fishing trip with VMS records and their corresponding behavioral
modes.

In addition, IMARPE runs a program of on-board observers for a ∼ 1% sample

of the fishing trips. They record the location and time of the different behavioral

modes occurring during the trips: fishing, searching, cruising (i.e. traveling follow-

ing a predetermined course), drifting, helping other vessels, and receiving or giving

fish to other vessel. For the remaining 99% of the fishing trips, behavioral modes

are unknown.

Based on the criteria described in Bertrand et al. (2007, 2005) and Joo et al.

(2011), a groundtruthed dataset gathering tracking data and their corresponding

behavioral modes is built (see Appendix A for more details). Overall we consider

three behavioral modes, fishing, searching and cruising. Fishing trips involving

‘helping’, ‘receiving/giving’ and ‘drifting’ modes are discarded, due to the low num-

ber of occurrences of these modes. Together they represent less than 6% of the

groundtruthed dataset. We work with a dataset corresponding to 2008, consisting

of 242 fishing trips (∼ 36000 fishing trips were performed in total in 2008). Figure

4.1 shows an example of a trip with each VMS record associated with a behavioral

mode.

For hidden state inference, two different approaches are investigated and evalu-

ated. Markovian models, which take into account the sequential nature of data; and

discriminative models, remarkably popular in the pattern recognition and machine

learning domain (He et al., 2008; Mjolsness and DeCoste, 2001; Nallapati, 2004).
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Henceforth, we will denote by St the state variable at time t taking a discrete value

st, which encodes a behavioral mode (fishing, searching or cruising). A state se-

quence starting at time 0 and ending at T is then denoted by ST
0 ≡ S0, S1, . . . , ST ,

taking discrete values sT0 . Likewise, XT
0 represents the sequence of continuous ob-

served variables taking values xT0 . Under the two approaches, the goal is to infer sT0 .

We perform a quantitative evaluation of the models performance using a clas-

sic cross-validation procedure. It proceeds as follows. The groundtruthed dataset

is split into two sub-samples. The first partition is used for training the models,

i.e., learning from the data and estimating the parameters. The second partition

is used for validating the models, i.e., evaluating model performance. Training and

validation partitions gather each 50% of the original sample of trips and are built

by repeated random sub-sampling (20 repetitions). This parameter setting provides

a trade-off between the performance evaluation and computational efficiency.

4.2.1 Markovian models

HMM: HMMs are the classic models for inferring hidden state sequences from ob-

served variables (Bengio, 1999). A HMM combines the two following processes.

An underlying first-order Markov process of the hidden state sequence, where the

probability of currently being at state st only depends on the immediately pre-

ceding state st−1. And a state-dependent observation process, where the prob-

ability of Xt = xt only depends on the current state st and not on previous

states or observations. Assuming homogeneity, a HMM can be fully character-

ized by (1) the initial probabilities πi = P (S0 = i), (2) the transition probabilities

pij = P (St = j | St−1 = i), and (3) the state-dependent observation probability

density functions (pdfs) bj(xt) = f(xt | St = j), where f(xt | St = j) denotes the

conditional pdf of Xt at xt given St = j. When observations are multivariate, under

mutual independence

bj(xt) =
E∏

e=1

bje(xte)

where E is the number of observed variables included in the model. The likeli-

hood of a HMM can be written as

P (ST
0 = sT0 , X

T
0 = xT0 ) = πs0bs0(x0)

[
T∏
t=1

pst−1stbst(xt)

]



4.2 Materials and methods 79

In our case study, several observed variables are available (sp, θ, ∆sp−1, ∆θ−1,

∆sp+1 and ∆θ+1). Over all possible combinations of observed variables, the subset

(combination) of variables giving the highest state-inference accuracy is chosen –the

computation of accuracy as well as other performance indicators are described in

section ‘Indicators of model performance’. For each observed variable, we test sev-

eral probability distributions based on a supervised maximum likelihood (ML) fit.

When ML estimation cannot be derived analytically, a numerical optimization is

used. Goodness-of-fit (GOF) is tested using the robust Cramér-von Mises statistic

(Schwarz, 1978). In cases where two or more distributions provided significant fits,

the AIC criterion (Akaike, 1981) is used for selection among them. All fishing trips

start in cruising mode, so initial probabilities are set to one for cruising and zero for

the other states. Given the training partition, the ML estimation of the transition

probabilities resorts to computing the relative frequencies of the transitions between

successive states (Dietterich, 2002). Using all these elements, the inference of the

sequence of hidden states sT0 is done by global decoding via the Viterbi algorithm

(Rabiner, 1989). Hidden Markov Model toolbox for Matlab™(Murphy, 1998) is used.

HSMM: A first-order Markov state process may not be, however, the most nat-

ural choice for the interpretation of movement patterns. It implicitly assumes that

time spent at a given state is distributed according to a geometric distribution.

This distribution is memoryless; it means that at a given time t, the waiting time

for switching from one state to a distinct state is independent from the time already

spent in the former state. However, in practice, a forager’s behavior – and more

specifically, a fisherman’s behavior – is not memoryless. A semi-Markov process may

therefore be more suitable. It explicitly models the state duration distribution and

may consider any distribution function. HSMMs are thus generalizations of HMMs.

They combine two processes: a state-dependent observation process as in HMMs,

and an underlying semi-Markov state process. A semi-Markov process is determined

by the duration distributions dj(u) = P (St+u+1 6= j, St+u
t+2 = j | St+1 = j, St 6= j) and

transition probabilities between distinct states pij = P (St = j | St 6= i, St−1 = i).

For the last visited state, a survival function of the duration is used: Dj(u) =∑
v6u dj(v). The likelihood of a HSMM (Guédon, 2003) can be written as
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Figure 4.2: Schematic representation of a HSMM. At each step, an observed feature
X is related to a state, which encodes a behavioral mode (C: cruising, F: fishing, S:
searching). The state process is modelled at the segment scale and it is characterized
by durations and transitions as shown above.

P (ST
0 = sT0 , X

T
0 = xT0 ) =πs0ds0(u0)

[
R−1∏
r=1

psr−1srdsr(ur)

]
psR−1sRD(uR)

× I

(
R∑

r=0

ur = T

)[
T∏
t=0

bst(xt)

]

where R + 1 is the number of visited states, ur is the duration at state sr, and

I() denotes the indicator function.

Therefore, compared to HMMs, HSMMs provide a model of the state process

at a higher scale: the segment scale (Fig. 4.2; Dong and He (2007); Yu (2010)).

This segment scale is potentially more relevant for interpreting and discriminating

distinct behavioral modes in foraging movement (in our case, the activities made

throughout a fishing trip).

The selection of observed variables, the fit of state-dependent observed variable

distributions and the estimation of transition probabilities (between distinct states)

follow the same criteria as for HMMs. Although state durations are inherently

discrete, continuous distributions provide flexibility under certain irregularities on

the frequencies of positioning of satellite records. They enable the incorporation of

those data directly into the model. Extensive literature on the use of continuous

distributions for modeling duration is available (e.g., Beyreuther and Wassermann

(2011); Dong and He (2007); Levinson (1986); Yu (2010)). Here we examine seven

continuous probability distributions for modeling the duration of each of the three

behavioral modes. Their parameters are estimated by maximum likelihood using the

training dataset. Then, GOF is tested using Cramér-von Mises statistic and AIC
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criterion is used for selection among distributions not rejected by the test. Using all

these elements, the inference of the sequence of hidden states sT0 is done by global

decoding via the forward-backward Viterbi algorithm (Guédon, 2007). A descrip-

tion of the main features of several extensions of the Viterbi algorithm for HSMMs

is given in Appendix B (the one we use is described in section B.5).

4.2.2 Discriminative models

Discriminative models are alternative approaches for inferring behavioral states

within recorded trajectories. In contrast to Markovian approaches, discriminative

models do not rely on the explicit modeling of the joint likelihood of observation

and state sequences. The inference of the behavioral mode sequence sT0 is stated as

a classification issue, i.e. the determination of the class (behavioral mode) attached

to any position along the trajectory. Within a supervised framework, discrimina-

tive models learn a classification rule to predict a class from an observed vector

xt. Random forests (Breiman, 2001), support vector machines (Burges, 1998) and

artificial neural networks (Warner and Misra, 1996) are among the state-of-the-art

techniques in the machine learning domain (Hastie et al., 2009). These models dif-

fer in the way classification rules are stated and learned. For SVMs, the goal is

to maximize the margin around the hyperplane that separates classes. For ANNs,

the objective is to minimize the classification error. And for RFs, discrimination

is achieved by the simultaneous minimization of the within-group variances and

maximization of the between-group variances. The relative performances between

these methods are application-dependent and vary according to the structure of the

observation space (Meyer et al., 2003). A key feature of discriminative models is

that they do not require any assumption on the nature of the observed variables,

their distributions or covariances. To prevent over-fitting during the learning stage,

a cross-validation procedure can be applied. Still, it requires sufficiently large and

representative groundtruthed datasets.

As for HMMs and HSMMs, the subset of observed variables giving the highest

inference accuracy is selected. The selected subsets may differ among the three dis-

criminative models. Architecture and parametrization of each discriminative model

is described below.

RFs: A random forest involves a set of N decision trees. A decision tree discrim-
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inates patterns recursively in a tree-like structure. At each tree node, m variables

are randomly selected among the subset of observed variables. Data are split fol-

lowing certain conditions on those m variables, so that within-group variance is

minimized and between-group variance is maximized. For each observed vector xt,

a tree’s output is its classification in a behavioral mode. Consequently, a random

forest’s output is the statistical mode of the classification outputs of N trees. We

test N = {50, 100, 500, 1000} and m = {1, 2, . . . , Y }, where Y is the size of the sub-

set of observed variables. The Matlab™implementation of the random forest library

(Jaiantilal, 2009) is used.

SVMs: Support vector machines are based on linear discrimination. A Gaussian

kernel is used here for mapping the originally observed vectors into a new space

in which classes (i.e., behavioral modes) may be linearly separated. Tested values

for the scale parameter of the Gaussian kernel are {10−4, 10−3, 0.1, 0.5}. SVMs also

involve a regularization parameter C. Increasing the value of C increases the cost

of misclassifying points and decreases generalization power of the model. We test

C = {0.1, 1, 10, 100}. The Matlab™implementation of the Libsvm library (Chang

and Lin, 2011) is used.

ANNs: Multilayer perceptrons (MLPs) are the most widely used architectures of

ANNs. Neurons are organized in layers. The first layer is composed of the observed

variables and the last layer is composed of the model classification output. Between

those first and last layers, one or more hidden layers can exist. Here, we use a MLP

with one hidden layer as in Joo et al. (2011). Considered options for the number of

hidden neurons range from one to ten. The Matlab™neural network toolbox is used

for the analysis.

For each discriminative model, we determine the optimal parameter setting ac-

cording to the classification accuracy.

4.2.3 Indicators of model performance

Overall, we aim at accurately reconstructing the sequence of states associated with

each fishing trip. We consider two scales of analysis. First, we evaluate the accuracy

of the inference at the step scale, and define the accuracy indicator as the percentage

of individual steps where the inferred states correspond to the real ones. Second, we
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assess model performance at the segment scale (Fig. 4.2), which best characterizes

behavioral modes. We use three indicators for each behavioral mode:

• The segment-level precision, defined as the percentage of inferred segments

where the inferred behavioral mode corresponds to the true one.

• The segment-level recall, defined as the percentage of real segments where the

true mode is correctly inferred.

• The F-measure or F1, which combines precision and recall performances (Mc-

Sherry and Najork, 2008). It is defined as the harmonic mean of precision

and recall, and reported here in terms of percentage similarly to precision and

recall indicators.

Accuracy, precision, recall and F1 are standard performance evaluation measures

in supervised contexts (Kohavi and Provost, 1998). Beyond these performance mea-

sures, we also investigate the extent to which the considered models deliver a relevant

global characterization of behavioral patterns, particularly regarding the shape of

the distributions of the behavioral mode durations. In this respect, we define a

fourth indicator at the segment scale, called duration. This auxiliary indicator is

computed as the mean squared difference between the empirical cumulative distri-

bution functions of both real and inferred mode durations. Its values range from 0

to 1, where 0 refers to an error-free inference.

Formulas for the computation of all these indicators are shown in Table 4.1.

Further details as well as an illustrative example on the computation of accuracy,

precision, recall and F1 are described in Appendix C.

After the best model is chosen, we use that model and its corresponding set

of observed variables for inferring the behavioral modes to all the available VMS

tracks from 2000 to 2009. Indicators of performance are computed for groundtruthed

subsets of tracks for each year.

4.3 Results

The selected distributions for the state-dependent observation process (for HMMs

and HSMMs) and for the duration of the states (for HSMMs) are shown in Table 4.2.
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Table 4.1: Indicators of model performance.

Scale Indicator

Step Accuracy =
inferred ∩ true

#states
× 100%

Segment

Recall =
inferred ∩ true

#true
× 100%

Precision =
inferred ∩ true

#inferred
× 100%

F1 =
2× Precision× Recall

Precision + Recall
× 100%

Duration =

∑n
i=1 (Fi −Gi)

2

n

Notes: F and G represent empirical cumulative distributions for the real and inferred
durations of a given behavioral mode, respectively.

Table 4.2: Distribution for each observed variable and duration conditioned on
states.

Observed Variable Searching Fishing Cruising

sp
generalized generalized Gaussian

Pareto extreme value mixture

θ uniform
wrapped Laplace-Gaussian
Cauchy mixture

∆θ−1 Kumaraswamy uniform loglogistic

∆θ+1 Beta uniform loglogistic

∆sp−1 Laplace
Gaussian

Student’s t
mixture

∆sp+1 Laplace Gumbel Student’s t

Duration
generalized

lognormal
generalized

extreme value extreme value

Notes:

When Beta and Kumaraswamy distributions are used, data is transformed to scale from
0 to 1.

For evaluating and comparing the two Markovian and the three discriminative

models, we selected, for each model, the subset of observed variables which led to the

greatest inference performance in terms of accuracy rate. Performance indicators at

step and segment scales are reported for each of these models (Table 4.3). All mod-

els infer states with an accuracy greater than 75%. By a small though significant

difference (p < 10−5 in paired-sample randomness tests; Siegel, 1956), the HSMM’s

accuracy is the highest.
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Table 4.3: Performance of all models for their corresponding best subsets of observed
variables.

Mode
Model HSMM HMM SVM RF ANN

Subset
sp, sp, sp,∆sp−1, sp,∆sp−1, sp,∆sp−1,

∆sp+1 ∆sp+1 ∆sp+1 ∆sp+1, θ,∆θ+1 ∆sp+1,∆θ+1

Accuracy 80.3% 79.1% 79.0% 76.4% 79.2%

F

Recall 86.6% 84.7% 88.3% 85.5% 88.5%
Precision 69.3% 69.4% 65.8% 64.5% 65.7%
F1 77.0% 76.3% 75.4% 73.5% 75.4%
Duration 4 14 17 29 22

S

Recall 67.5% 64.9% 56.3% 62.0% 59.5%
Precision 56.9% 56.1% 57.6% 47.5% 54.3%
F1 66.7% 60.2% 56.9% 53.7% 56.9%
Duration 7 4 33 41 26

C

Recall 91.0% 87.4% 89.6% 76.9% 88.7%
Precision 87.3% 86.4% 71.9% 72.0% 75.2%
F1 89.1% 86.9% 79.8% 74.3% 82.1%
Duration 1 2 7 25 7

Notes: In bold, the highest values of accuracy and F1. F: fishing; S: searching; C:
cruising. Duration values are scaled by (10−4).

Regarding behavioral modes, cruising seems to be the easiest mode to identify.

All models show greater F1 scores for the cruising mode (between 74% and 89%).

Likewise, the greatest recall and precision values correspond to cruising for all mod-

els. Relevant F1 scores are also reached for fishing mode inference (between 73% and

77%). By contrast, the identification of the searching mode appears difficult for all

models (F1 between 54% and 67%). This behavioral mode involves relatively large

confusion rates with both fishing and cruising modes (between 15% and 19% of the

searching states are classified as fishing, and between 25% and 34% are classified as

cruising, among all models).

For each behavioral mode, the HSMM outperforms all the other models (greatest

F1 scores of 77%, 67% and 89% for fishing, searching and cruising, respectively).

The second best model is the HMM. Differences between F1 scores of the HSMM

and the HMM are significant for all behavioral modes (p < 10−5 in all cases). Among

the discriminative models, the ANN is the best model, followed closely by the SVM.

The analysis of the distribution of the inferred durations for each behavioral

mode leads to similar conclusions. In Figure 4.3 it can be observed that all three

discriminative models show higher empirical densities for low duration values than
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Figure 4.3: Distribution of the duration of each behavioral mode. For each model,
an empirical distribution of the duration of each mode is estimated based on the
duration of all inferred segments encoding the mode. RF: random forest. SVM:
support vector machine. ANN: artificial neural network. HMM: hidden Markov
model. HSMM: hidden semi-Markov model. Real: known behavioral modes.

the Markovian models and the groundtruth. Discriminative models, i.e. RF, SVM

and ANN, which do not consider state transitions nor durations, tend to under-

estimate the duration of modes due to over-segmentation. By contrast, the Marko-

vian models, particularly HSMM, provide more accurate estimates of these dura-

tions. Whereas the distribution of the durations for fishing and cruising modes

are clearly better represented with the HSMM (duration statistics of 4 × 10−4 and

1 × 10−4 for fishing and cruising, respectively; Table 4.3), the HMM gives slightly

better results for the searching mode (duration of 1× 10−4).

The over-segmentation problem is illustrated for one trajectory sample when

comparing the sequences of behavioral modes inferred by the HSMM and the RF

with the true sequence of modes (Fig. 4.4). There is strong over-segmentation in

the sequences inferred by the RF, leading to under-estimation of the duration of

the segments. By contrast, the HSMM achieves relevant representation of the mode

sequences through time (Fig. 4.4, low panel) and thus also through space (Fig. 4.4,

right panel).
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Figure 4.4: A fishing trajectory. Left upper panel: track with real behavioral modes.
Right upper panel: track with inferred modes using the HSMM. Lower panel: tem-
poral representation of the behavioral mode sequences, real and inferred, where 0 in
the x-axis represents the beginning of the trip.

Regarding computational cost, we compare all five models in Table 4.3 for one

replica where 121 tracks were randomly selected for training and the remaining 121

for validation. The HMM shows the lowest computational time (16.78 seconds),

followed by the RF and the SVM models (22.09 and 23.07 seconds, respectively).

Next it is the HSMM (64.04 seconds) and finally the most expensive one is the ANN

(140.14 seconds). For the HMM and the HSMM, the computational time comprised

the estimation of the probability density function parameters and Viterbi algorithm

application. For the SVM, the RF and the ANN, it comprised the optimal parameter

setting, as described in the Methods section. The high computational cost of the

ANN could be greatly affected by the call to a graphical interface as automatically

performed by the Neural Network toolbox of Matlab™. This computational analysis

should only be regarded in relative terms. Optimized implementations of these

models could be expected to provide important computational gains (by a factor of

10 or more).
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Since HSMMs outperform all the other models, they are then used for inferring

the associated behavioral modes to all the available VMS tracks from 2000 to 2009.

We use sp and ∆sp+1 as observed variables since they show the best performance

for the 2008 dataset. All subsets of observed variables were also tested when using

HSMMs for 2000, and sp and ∆sp+1 gave the best performance, too. Indicators of

performance were computed over the groundtruthed subsets of tracks available for

each year (Table 4.4). HSMM performance is similar among all years.

4.4 Discussion

With a representative groundtruthed dataset composed of 242 fishing trips, we per-

form a comprehensive cross-validation evaluation of different Markovian and dis-

criminative models for inferring behavioral modes from trajectory data. Our results

show that the HSMM is the best model and enlighten several critical issues.

4.4.1 State dynamics are key information

Markovian models have the strength of considering the sequential nature of the

data: state transitions are explicitly modeled and the sequence of states is inferred

as the most likely sequence given the performed trajectory. However, they present

limitations for incorporating the information contained in the observed variables,

especially in cases of non-Gaussian multivariate observation spaces. Practical ap-

plications of Markovian models often involve simplifications such as independence

and/or Gaussianity assumptions for modeling the multivariate distribution of the

observed features given the behavioral modes. In contrast, discriminative models

state the inference of behavioral modes as a classification issue. They use powerful

non-linear and multivariate classification rules. At the step scale, the HSMM sur-

passed the discriminative models by small differences (+1% of accuracy with respect

to the ANN and the SVM, and +4% with respect to the RF; Table 4.3). At the

segment scale, the surpassing performance of the HSMM was clearer (differences

in F1 scores between +1.6% and +9.8% regarding both the ANN and the SVM,

and between +3.5% and 14.8% regarding the RF; Table 4.3). This evidences that

the information contained in the state sequence is key for accurately inferring the

behavioral modes.
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Figure 4.5: Mean accuracy for simulated sequences for different sampling rates using
HSMM and HMM.

4.4.2 HSMMs are recommended for behavioral mode infer-

ence

To our knowledge, our study presents the first application of HSMMs to fishing

tracks using groundtruthed data on behavioral modes. For this study case, with

steps of ∼ 1 hour, the HSMM performed slightly better than the HMM. A simula-

tion study on high-resolution data (one-second steps) is described in Appendix D.

We applied HSMMs and HMMs to sub-sampled versions of these sequences. The

performance of each model was assessed by the mean accuracy (MA), which is the

average of the accuracy for each behavioral mode (Fig. 4.5). For one-minute steps,

the HMM performed very poorly, whereas for 30-minute steps it was by far more

relevant (50% vs 78% of MA). By contrast, MA rates for the HSMM remained above

80% for all time steps. The HSMM actually benefited from high-resolution sequences

– when available – to significantly improve inference performance (100% of MA for

one-minute steps). These additional results clearly illustrate that the relevance of

the first-order Markov state process embedded in HMMs greatly depends on the time

steps of the trajectory data. By contrast, we show that the relevance of the HSMM

does not decrease with smaller time steps. Likewise, Whitehead and Jonsen (2013)

showed that reducing time steps severely decreased the performance of first-order

Markov processes for estimating animal spatial distributions from tracking data.
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Alternatively, higher-order (nth-order) hidden Markov models account for ad-

ditional complexity in the dynamics of the state sequence. They comprise a nth

memory, i.e. the state value st depends on the state values taken at the n pre-

ceding states. They implicitly involve more general distributions on state segment

durations than geometrical distributions. Therefore, they should outperform first-

order HMMs for high-resolution sequences. However, in most practical problems

the choice of the order of the hidden Markov model is not obvious and depends on

both the time resolution of the data and the characteristic durations of the state

segments. In addition, they are computationally expensive. HSMMs avoid the

problem of choosing and fixing an order for the Markovian process. By consider-

ing transitions between distinct state segments and distributions on their durations,

HSMMs model the scale of a homogeneous behavioral mode. By considering any

distribution for modeling duration probability, HSMMs explicitly model the time

an individual stays in a behavioral mode, rather than simply accepting the geo-

metric decay of the duration distribution imposed by standard first-order HMMs

(Langrock et al., 2012). Moreover, by considering continuous distributions, HSMMs

can directly incorporate tracking data involving some cases with different time steps.

Overall the great flexibility of HSMMs makes them particularly attractive for

the analysis of fishing movement patterns.

4.4.3 Real behavioral modes and the relevance of model val-

idation

The technological and methodological advances enable access to larger amounts of

data and lead to continuously elaborating and applying new flexible modeling ap-

proaches for individual’s movement (Jonsen et al., 2013). While following this trend,

model validation and evaluation are often disregarded. Sacks and Ylvisaker (2012)

discuss this issue as a challenge in the future of statistics in general. It is also a

challenge in movement modeling, particularly due to the conceptual and practical

difficulties for obtaining groundtruthed data on individual’s behavior.

Hence, when validating models with groundtruthed data, not only the mod-

els should be discussed but the data as well. In this work, we had access to a

groundtruthed dataset, where behavioral modes were not chosen by us. Instead,

they were previously defined by the fishermen themselves together with the on-
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board observers. This meant that states were not chosen in a way that they would

be a priori easily recognizable (based on path geometry). On the other hand, it

gave a great opportunity for evaluating the models performance for inferring real

and complex behavioral mode sequences.

We reported 80% of global accuracy and 77%, 67% and 89% of F1 for fishing,

searching and cruising, respectively, using the fitted HSMM model. Whereas the

general performance is satisfactory, the searching mode appears difficult to identify.

It might be explained by the nature of this behavioral mode. Interviewed fishermen

anticipated that geometrical patterns in their tracks related to searching might vary

greatly depending on several factors, especially whether or not they presume the

inspected zone to be of high prey density. According to the fishermen, observed

patterns for fishing and cruising are more stable. The low F1 score for searching

may also be due to the time resolution of the data. As for fishing, the activity

lasts ∼ 2 hours on average. However, 30-minute searching modes between two fish-

ing modes were also reported by on-board observers. Such short state segments

result in mixed signatures at the one-hour steps of the VMS data and can hardly

be analyzed. Higher-resolution tracking data should clearly contribute to a better

identification of such searching modes, and would decrease the confusion rates with

fishing and cruising; thus improve the inference accuracy of all behavioral modes.

Moreover, as shown by the simulation study, HSMMs would increase their inference

power if data resolution increases.

4.4.4 Beyond validation: inference in supervised and semi-

supervised contexts

In supervised contexts, inferring behavioral modes is not only useful for achieving

model validation. Supervised contexts do not necessarily imply that groundtruthed

data on the behavioral modes of the whole population of tracks are available. Known

behavioral modes may only be available for a subset of the tracks. For some fish-

eries, there may not be enough resources for on-board observers to register activities

from all fishing trips of the entire population of vessels with tracking devices. For

the Peruvian anchovy fishing fleet, more than 30000 fishing trips are tracked by

VMS per year, but behavioral modes of only ∼ 300 of those trips are registered

by on-board observers. Thus, models trained and validated over the groundtruthed

samples could be used for inferring behavioral modes over the remaining tracks.
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On the other hand, the non-supervised observed data could be used for updating

the trained and validated models. In the machine learning domain, this is generally

referred to as a semi-supervised setting. During the last years, numerous semi-

supervised strategies have been proposed (see Chapelle et al. (2006) for an extensive

classification and revision). Among them, Markovian models naturally extend from

the supervised case to the semi-supervised one, using the EM algorithm (Dempster

et al., 1977). This appears as a particularly promising research direction for eco-

logical studies, including the estimation of the resources (i.e. number of on-board

observers and analyses) to be allocated for gathering an optimal groundtruthed

dataset.

4.4.5 Modeling extensions for improving inference power

We have shown and discussed the advantages of Markovian models for taking into

account the sequential nature of the data, while discriminative models typically

achieve an independent inference of each state. Introducing past information on

the observed variables may improve the inference performance of the discriminative

models. We tested this possibility by introducing the immediate past values of the

observed variables as new observed variables for the discriminative models. That

meant adding four observed variables: speed at the previous step (sp−1), heading at

the previous step (θ−1), change of speed between the two previous steps (∆sp−2) and

turning angle between the two previous steps (∆θ−2). The immediate past values

of ∆sp+1 and ∆θ+1 are ∆sp−1 and ∆θ−1, respectively. As indicated in the Methods

section, for each model, from all the possible combinations of observed variables, we

retained the subset of variables giving the greatest accuracy rate. Only for ANNs, a

different subset of variables (sp,sp−1,∆sp−1,∆sp+1,θ,θ−1,∆θ−1,∆θ+1) gave a higher

accuracy. The new subset of observed variables involves the subset of variables from

Table 4.3 plus four more observed variables. It improves inference of cruising modes

(+0.5% in F1) and the general accuracy of the ANN model (+0.3%), although it

decreases the performance over fishing and searching modes (−0.8% and −0.9% in

F1, respectively).

Of course, more memory (past and future) in the observed variables could be

added. But then, we would come across with the same memory-order dilemma than

the one discussed for states in HMMs. Moreover, when we consider nth order past

(or future) of an observed variable, the first (or last) n records will have missing
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values. This could be particularly annoying for classification using discriminative

models. Another possibility would be to incorporate binary probabilities of the past

states (i.e. presence or absence of a behavioral mode in the past states) for incre-

mental training of discriminative models (Heskes and Wigerinck, 1996). Incremental

training involves training the model one time-step at a time, updating the model

at each step. Nonetheless, this may result in over-fitting and large generalization

errors. Besides, the direct application of this strategy may lead to drift effect. It

means that inference at time t may be biased as it is driven by the effect of the

inference at time t − 1. By contrast, Markovian models rely on a global inference,

i.e. retrieving the state sequence that maximizes the posterior likelihood given the

observed series. This global inference involves a forward-backward procedure which

guarantees that the inference of any given state equally depends on past and future

features along the trajectory.

Hence, combining the Markovian setting, which accounts for the sequential na-

ture of the states, and the discriminative setting, which can achieve improved clas-

sification performance in high-dimensional non-Gaussian observation spaces, seems

highly appealing. Such hybrid models have been investigated for different applica-

tions, especially speech recognition (e.g.Bourlard and Morgan (1994, 1998); Ganap-

athiraju et al. (2000); Stadermann and Rigoll (2004)). They are stated as Markovian

models that rely on the definition of an observation likelihood from the output of

the chosen discriminative model (e.g. the discrimination SVM function for hybrid

SVM-Markov models; Ganapathiraju et al. (2000)). However, the parametrization

of the observation likelihood and the training of the hybrid model remain complex

issues, as we show in Appendix E.

Another attractive extension would be to model the observation process at the

segment scale, i.e. at the same scale than that of the semi-Markov state process.

That way, at each segment, one observation feature would be related to one state

segment, which at the same time, would depend on the immediately preceding state

segment. This modeling approach presents some potential advantages: it would

imply modeling at the behavioral mode scale not only the state process but the

observation process as well, and it could significantly improve the robustness to the

presence of low-informative observation features.

The incorporation of informative priors could also play an important role in

improving behavioral mode inference. For instance, fishermen may know a priori
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that the probability of fishing success increases/decreases with daylight. Since this

knowledge affects their behavior, hour-dependent state transition priors can be in-

corporated to the model. Likewise, priors on competition/association, as well as

local climate conditions restricting mode transitions and durations could also be

introduced in the model. A preliminary analysis on the inclusion of covariates into

the model is shown in Appendix E.

4.4.6 Synthesis

We have shown a pioneer evaluation and comparison of Markovian and discrimina-

tive models for inferring behavioral modes within movement tracks in a supervised

framework. The surpassing performance of Markovian models over the discrimina-

tive models highlights the importance of modeling state dynamics for accurately

inferring the behavioral mode sequences. HMMs have been the most common ap-

proach in movement ecology. However, semi-Markov processes represent better the

behavioral mode sequences than first-order Markov processes, since they explicitly

model state duration and consider transitions at a segment scale. The HSMM per-

formance on the groundtruthed dataset is slightly better than that of the HMM.

As discussed above, this result responds to the nature of these particular behavioral

modes as well as to the low resolution of the data. The ∼ 1 hour time steps are

slightly below the characteristic durations of fishing and searching segments. Hence,

regarding time steps, it is a favorable scenario for HMM. Through a simulation ex-

periment, it was shown that increasing time resolution may decrease the accuracy

obtained with HMMs and conversely increase the accuracy of HSMM inference. In

foraging movement analysis, where (1) each type of behavior contained in a track

is typically characterized by a distinct duration, (2) tracking data are increasingly

available at high resolutions, and (3) irregularity in sampling rates is not uncommon,

we highly recommend the use of HSMMs.

For the purposes of this thesis, we will use HSMMs for inferring behavioral modes

on the VMS tracks of the whole fishing fleet from 2000 to 2009.
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Chapter 5

Classifying fishing trip patterns of

Peruvian anchovy purse-seiners

“In nature it is not convenient to consider every difference that is in things, and

divide them into distinct classes: this will run us into particulars, and we shall be

able to establish no general truth (..) The collection of several things into several

classes gives the mind more general and larger views.”

– John Locke (An Essay Concerning Human Understanding)

5.1 Introduction

Understanding fishermen spatial behavior and effort is essential for fisheries man-

agement (Garcia and Cochrane, 2005; Wilen, 2004). Fishermen spatial behavior

responds to external factors (e.g., biotic and abiotic conditions, management rules,

economic stimulus) and ‘internal’ factors (e.g., skippers’ skill and personality, char-

acteristics of the vessels). A fishing trip, as a behavioral unit, can reveal fishermen

strategies that respond to both external and internal factors. However, at the scale

of a fishing trip, the characterization of movement patterns has been only used for

identifying different métiers (Russo et al., 2011b).

The Peruvian anchovy fishery (Engraulis ringens), the world’s largest monospe-

cific fishery, provides a great opportunity for analyzing fishing trip strategies, which

are not subject to a métier effect. In the Northern Humboldt Current system, fish-

ermen trips are subject to several sources of variability: (1) the highly variable

environmental conditions; (2) the sensitive and adaptive response of anchovy to the

environmental conditions; (3) the race for fish until 2008 and the individual quota

system since 2009; (4) the adaptive management, with distinct policies for the north-

97
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center (NC ; from 3°S to 16°S) and south regions (S ; from 16°S to the frontier with

Chile). Regarding the latter, there are several differences in the management policies

between the NC and S regions: catch quotas are computed independently for each

region; fishing is opened for many more days at the south; there is a ban for fishing

within the first 5 nm from the coast at the NC, while at the S it varies between

1.5 nm and 3 nm from the coast. These differences in policies can cause contrasted

fishing patterns among regions. Trip patterns should also respond to more intrinsic

characteristics, such as skippers skills and personalities, and the intrinsic character-

istics of the vessels.

Patterns of fishermen trajectories can be investigated from Vessel Monitoring

System (VMS) data. From time series of vessel positions, it is possible to obtain

fishing trip descriptors such as duration, distance traveled, maximum distance to

the coast and time spent fishing, among others. In Peru, VMS is mandatory for the

industrial fleet since 2000. In practice, while the steel fleet (vessels made of steel

and with at least 120 m3 of fish-hold capacity; Aranda, 2009) was almost entirely

covered with VMS by 2000, the coverage of the wooden fleet (wooden-hulled and

between 30 m3 and 119 m3 of fish-hold capacity) was much more gradual. In Joo

et al. (in review), we analyzed how global fishermen trip patterns (i.e., average trip

descriptors) are shaped by the environmental and biotic conditions occurring at a

fishing season scale. Here, we study the fishing trip as a behavioral unit, and not

an ‘average trip’ for a given fishing season. Therefore, we analyze fishing trips from

different fishing seasons and years mixed all together, isolating them from their time

period. By doing so, we ‘weaken’ the environment and fish stock effects in fishermen

behavior, what allows a closer examination of the intrinsic variability (vessel and

skipper characteristics).

In this work, we explore the patterns of fishermen behavior using a dataset of

352711 fishing trips monitored during the 2000-2009 decade, from which a set of

descriptors were computed from VMS data. By means of a hierarchical cluster anal-

ysis, we study how the trips associate in different groups without establishing a

priori the number of clusters. All the trips from the 10 years are analyzed together.

If an ecological condition had a very strong effect in fishing trip patterns during

a given year or group of years, then the trips from that year or those years will

naturally associate with a specific cluster. We hypothesize that:

(1) Since anchovy is relatively accessible near the coast, most trips are short and

stay near the coast, while a small group of high risk takers or stochasts (Allen and
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McGlade, 1986) go farther away into unexplored zones; the patterns of this stochasts

should stand out.

(2) Technology, manifested in the physical characteristics of the vessels and their

equipment, conditions fishermen strategies (Stouten et al., 2011), which should be

expressed through fishermen patterns. The only information of vessels in our dataset

is the type of fleet segment; we thus expect to find differentiated behaviors between

the two segments.

(3) Differences in management conditions between north-center and south regions

off Peru cause contrasted fishing trip patterns.

(4) The end of the race for fish in 2008, must have changed fishermen behavior and

strategies at sea, so fishing trips from 2009 should differentiate from the others.

Therefore, we expect that fishing trip groups will disentangle risk takers from fol-

lowers, NC from S trips, steel from wooden vessels, and trips under TAC (total

allowable catch) system from the ones under IVQ system.

This chapter is organized as follows. In the next section, we present the fish-

ing trip descriptors and the statistical methodology based on principal component

and hierarchical clustering analyses (PCA and HCA, respectively). In section 3, we

describe the multivariate fishing trip behavior via PCA and use the principal com-

ponents for HCA. After choosing the number of clusters, we examine the pertinence

of our hypotheses.

5.2 Materials and methods

5.2.1 Fisheries management, fleet and data

For this study, VMS positioning records from the Peruvian anchovy industrial fleet

corresponding to the decade 2000− 2009 are used (±100m of accuracy; ∼ 1 record

per hour; Fig. 5.1). Pre-processing of VMS data are performed based on the criteria

and algorithms described in Bertrand et al. (2007, 2005); Joo et al. (2011) and are

detailed in appendix A. The number of fishing trips per year kept in the dataset is

shown in Table 5.1.

For each fishing trip, we first computed the following 11 global metrics: the

duration (Dur), the total distance traveled (Dist), the maximum distance from the

coast (Max.DC), the maximum and the minimum latitudes attained during the trip
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(Lat.Max and Lat.Min, respectively), and the maximum and minimum longitudes

attained during the trip (Lon.Max and Lon.Min, respectively). Longitudes and lati-

tudes are all located in the Western and Southern hemispheres, so they take negative

values.

Another source of information regarding fishing trip patterns is IMARPE’s (Pe-

ruvian Marine Research Institute) program of on-board observers. For 1% of the

fishing trips, on-board observers record the location and time of three main activities

(i.e., behavioral modes) occurring during the trips: fishing, searching and cruising.

In order to infer the behavioral modes for the remaining 99% of the VMS-tracked

fishing trips, a supervised hidden semi-Markov model was trained and validated us-

ing the on-board observer dataset (Chapter 4). This model reached a mean accuracy

of 80% in the determination of the correct behavioral modes from the VMS data.

From the reconstructed sequences of behavioral modes, we compute four additional

features: the time spent searching (Time.Searching), fishing (Time.Fishing) and

cruising (Time.Cruising), the proportion of time spent on each of those modes with

respect to the duration of the trip (Prop.Searching, Prop.Fishing and Prop.Cruising,

respectively) and the time spent from the beginning of the trip until the first fishing

set (Bef.Fishing). Hence, we had a total a total of 14 metrics describing fishing trips.

Figure 5.1: VMS positioning records from 2000 to 2009.

5.2.2 Statistical analyses

For the considered multivariate analyses, all variables are standardized. Then, we

carry out a PCA (Pearson, 1901) before the clustering. Using a PCA before a clus-
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Table 5.1: Fishing trips per year.

Number of trips Percentage of trips Percentage of wooden-vessel
(from the total of trips (from the trips

trips in the dataset) occurred in each year)

2000 28807 8.2 0.5

2001 26176 7.4 1.1

2002 44429 12.6 0.7

2003 30764 8.7 1.6

2004 43648 12.4 8.9

2005 41518 11.8 27.7

2006 31018 8.8 37.6

2007 30606 8.7 42.0

2008 36143 10.2 42.5

2009 39602 11.2 53.2

Total 352711 100.0 22.0

ter analysis has several attractive advantages (Deporte et al., 2012; Husson et al.,

2010): (1) removing the noise in the data by eliminating the last dimensions; (2)

retaining only the components that we know how to interpret; (3) learning more

about the interaction between variables; and (4) reducing the dimensionality of the

initial data matrix which makes the cluster analysis less computationally expensive

(although in our case study the dimensionality is not too high to be computationally

expensive).

Clustering is carried out over the first principal components (Husson et al., 2010).

Cluster analysis is a method for grouping sets of features into groups or clusters in

such a way that the features in the same cluster are more similar to each other than

to those in other clusters. It is an unsupervised classification technique, since the

clusters are not defined a priori (Hastie et al., 2009). There are two main types of

clustering: hierarchical and flat or partitioning. In partitioning clustering, clusters

are independent of each other; i.e. there is no particular structure or organization

within them or between them. Moreover, the number of clusters has to be given as

an input to the analysis. Here we use hierarchical clustering. This method organizes

partitions in a dendrogram (i.e., a tree structure) and partitions can be seen at dif-

ferent levels of granularities (i.e. refine/coarsen clusters) using different numbers of

clusters, which provides a better understanding of the data. For merging clusters

and constructing the dendrogram, we use Ward’s minimum variance method (John-
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son and Wichern, 2007) and the Euclidean distance function.

Statistical analyses were performed with R software (R Core Team, 2013). Fac-

toMineR package (Husson et al., 2013) was used for PCA and Rclusterpp (Linder-

man, 2012) for hierarchical clustering.

5.3 Results

For the PCA, not all the variables described above are used as active variables. Dist,

Lat.Max and Lon.Min are discarded (i.e., only used as supplementary variables)

since they are highly correlated to other active variables (Dur and Time.Cruising,

Lat.Min, and Lon.Max, respectively). We prefer to use absolute time in each activity

rather than proportions because absolute times are more correlated to the princi-

pal components; so Prop.Searching, Prop.Fishing and Prop.Cruising are also dis-

carded. Moreover, we also discard Time.Searching since the sum of Time.Cruising,

Time.Fishing and Time. Searching for each trip is equal to Dur (no variable should

be expressed as a linear combination of others). Overall, we use Dur, Lat.Min,

Lon.Max, Max.DC, Time.Fishing, Time.Cruising and Bef.Fishing. The other vari-

ables are still used as supplementary variables and projected into the PCA space

(Fig. 5.2). The first component, which accounts for 45% of the variance, is strongly

correlated with Dur, Dist, Time.Cruising, Bef.Fishing and Max.DC (Table 5.2). It

refers to long and distant trips. The second component, accounting for 28% of the

variance, relates to geographical location. High values on this axis correspond to

northern fishing trips (larger latitude values are closer to zero or the Equator; and

smaller longitude values are farther from Greenwich). The third component, which

accounts for 14% of the variance, can be interpreted as a fishing effort proxy. High

values in this axis are associated with much time spent fishing (in absolute time and

in proportion of the duration of the trip). Overall, the three components explain

87% of the variance.

Cluster analysis is then performed over the scores corresponding to the three

components. Based on the computed dendrogram (Fig. 5.3a) and the explained

variance (i.e., the percentage of total variance represented by the between-cluster

variance, Husson et al., 2010, Fig. 5.3b) the 4-cluster structure is kept; it represents

61% of the explained variance. Boxplots of each descriptor are computed for each

cluster (Fig. 5.4). The first cluster is composed of 15% of the fishing trips. It is
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Table 5.2: Significant correlations between the variables and the principal compo-
nents (p < 0.05). Supplementary variables are in italic. Correlations above 0.70 are
in bold.

Variables
PC1 PC2 PC3

(45%) (28%) (14%)

Dur 0.94 −0.07 0.26

Dist 0.93 −0.18 −0.10

Time.Cruising 0.87 −0.19 −0.23

Bef.Fishing 0.74 −0.20 −0.41

Max.DC 0.73 0.01 −0.23

Time.Fishing 0.59 0.10 0.78

Time.Searching 0.39 0.02 0.29

Prop.Cruising 0.35 −0.25 −0.55

Lat.Max 0.27 0.94 −0.11

Lat.Min 0.14 0.98 −0.08

Lon.Max −0.19 -0.97 0.11

Prop.Fishing −0.19 0.26 0.72

Prop.Searching −0.22 0.08 0.12

Lon.Min −0.33 -0.93 0.14

mostly associated to fishing trips from the Southern region (almost 100% of southern

trips; see Table 5.3) which remain near to the coast. The second cluster is composed

of 17% of the fishing trips. It contains the longest and most distant trips by far. The

highest fishing, searching and cruising absolute times are associated to this cluster.

Trips of this second cluster were mostly concentrated at the central latitudes (be-

tween 8°S and 12°S), though they also operated in all the other latitudinal zones off

Peru. The third cluster is composed of 32% of the fishing trips, and is mostly related

to short and inshore trips. Those trips have the highest proportions of time spent

fishing and searching and the lowest in cruising. They mostly operated between

latitudes 7°S and 9°S. 75% of the fishing trips corresponding to wooden vessels are

contained in this cluster (Table 5.4). The fourth cluster is composed of 36% of the

fishing trips. Trips associated with this cluster have higher distance traveled, dura-

tions and maximum distance from the coast than the first and third clusters. Most

of those fishing trips operated between latitudes 9°S and 13°S.

Each cluster contains fishing trips from all years (Table 5.3). Regarding how

each year’s trips are distributed in the clusters (Table 5.4), it should be noticed that

cluster 4 contains higher proportions of fishing trips from 2000 to 2005 than the
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other clusters (between 38% and 45% for each year). Likewise, cluster 3 contains

the highest proportions of fishing trips from 2006 to 2009 (between 40% and 49%

for each year). Those 2006 − 2009 fishing trips constitute 56% of the trips in the

cluster.

Table 5.3: Characteristics of clusters. Percentage of fishing trips corresponding to
each year, fleet and region, for each cluster.

Clusters
1 2 3 4

Years

2000 5.1 10.3 6.6 9.9

2001 4.9 9.5 7.0 7.9

2002 17.1 13.3 6.2 16.0

2003 5.3 18.5 4.4 9.4

2004 13.1 15.0 8.0 14.7

2005 14.4 7.5 11.6 12.8

2006 11.1 6.3 11.2 6.8

2007 10.4 6.4 12.0 6.0

2008 11.7 5.6 15.8 6.8

2009 6.7 7.5 17.2 9.6

Total 100.0 100.0 100.0 100.0

Fleet
Steel 90.4 93.6 48.3 91.8

Wooden 9.6 6.4 51.7 8.1

Total 100.0 100.0 100.0 100.0

Region
North-center 0.3 90.9 100.0 100.0

South 99.7 9.1 0.0 0.0

Total 100.0 100.0 100.0 100.0

Regarding the hypotheses made at the beginning of this work, we expected to

disentangle risk takers from followers, NC from S trips, steel and wooden vessels,

and trips under TAC system from the ones under IVQ system. Through PCA and

HCA we identified 4 clusters. One cluster contained the longest trips and was associ-

ated with risk takers. Another cluster corresponded to trips in the Southern region.

A third cluster was mostly associated with wooden vessels; while the last and larger

cluster, which was label ‘ordinary’ (Fig. 5.3a), did not present any extraordinary

characteristic: their trips were made by steel vessels in the NC region (mostly at the

center), without outstanding duration, distances for steel vessels (they made longer

trips than wooden vessels). No cluster grouped 2009 fishing trips, so no evidence in

change of behavior as a response to the IVQ system was found.
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Table 5.4: Characteristics of each year, fleet and region. Percentage of fishing trips
associated to each cluster. For each line, the highest percentage of trips associated
to a cluster is in bold.

Clusters
1 2 3 4 Total

Years

2000 9.6 21.6 25.7 43.1 100.0

2001 10.1 21.8 30.0 38.1 100.0

2002 20.9 18.1 15.7 45.3 100.0

2003 9.3 36.4 16.0 38.3 100.0

2004 16.3 20.8 20.8 42.2 100.0

2005 18.8 10.9 31.6 38.6 100.0

2006 19.4 12.3 40.6 27.7 100.0

2007 18.4 12.7 44.4 24.5 100.0

2008 17.5 9.4 49.3 23.7 100.0

2009 9.2 11.4 49.1 30.3 100.0

Fleet
Steel 17.8 20.5 19.8 41.9 100.0

Wooden 6.7 5.0 75.2 13.2 100.0

Region
North-center 0.1 18.7 38.5 42.8 100.0

South 90.8 9.2 0.0 0.0 100.0

5.4 Discussion

In this work, we used a large dataset composed of 352711 fishing tracks, for studying

how fishing trips grouped in different types of behavior, and identifying the main

factors conditioning those behaviors. We used HCA over 3 principal components,

which were in turn computed on several movement descriptors of the trips. The

first component was associated with long distant trips, the second one was related

to geographical location and a third one was associated with time spent fishing.

Four clusters were identified based on those principal components and were labeled

‘risk takers’, ‘Southerners’, ‘wooden’ and ‘ordinary’ (Fig. 5.3a). Those clusters were

consistent with 3 out of 4 of the hypotheses proposed at the beginning of the chap-

ter. We will briefly discuss the implications of each of those clusters.

The first cluster to be dissociated from the population of tracks is the one of the

risk takers. The risk-taker cluster is associated with long distant trips (Fig. 5.5b).

In the Peruvian anchovy fishery, fishing trips typically last about 24 hours, mostly

because vessels can only land once every 24 hours. In addition, since anchovy prefers

cold coastal waters (Swartzman et al., 2008), in general, fishing vessels do not need
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(a) Dur (b) Dist

(c) Lat.Max (d) Lat.Min

(e) Lon.Max (f) Lon.Min

Figure 5.4: Boxplots for each fishing trip descriptor and each cluster.

to go too far from the coast to fish. Long distant offshore trips may be made by

risk takers. Allen and McGlade (1986) define them as skippers whose behavior is

poorly driven by information – of where the large patches of fish are or of where

the vessels are concentrated. They search ‘randomly’ or, more precisely, according
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Figure 5.4: Boxplots for each fishing trip descriptor and each cluster.

to some personal scheme of knowledge. Because they take more risks, they explore

less visited zones and might discover new fish patches.

Their behavioral patterns strongly differ from the ones of the ‘cartesian’ skip-
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Figure 5.4: Boxplots for each fishing trip descriptor and each cluster.

pers. The latter, unwilling to take risks, go to the zones promising the best known

return, based on information on fish patches or satisfactory catches by other vessels.

For that reason, ‘cartesians’ are also called followers. Risk takers are mostly from

the steel fleet, since those vessels are better equipped for longer trips. Still, a small
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proportion of ‘risky’ trips were performed by wooden vessels.

Long distant trips may also refer to rare cases of low accessibility to anchovy

near the coast, due to either environmental conditions, or local depletion due to

fishing pressure over the past days in the more coastal zones. Rather than willingly

risk takers, these trips would correspond to ‘forced visitors’. For better disentan-

gling risk takers from visitors, the proportion of risk-taking trips by vessel should be

computed, since trips from risk takers should often correspond to this cluster, while

only a few trips from the visitors would be associated with this cluster. This is a

feasible though difficult task, due to the current practice of skippers of changing the

name of their vessels through the years.

‘Southerners’ was the second cluster to be formed. It is related to the particular

management policy for that region, with very short fishing closures and less strict

coastal restrictions for fishing (between 1.5 nm and 3 nm). For those reasons, fishing

trips in this region typically last shorter and do not go very far from the coast (Fig.

5.5a). The percentage of fishing trips associated with this cluster, 15%, matches the

average percentage of fishing trips performed in the south region between 2000 and

2008 (also 15%), computed from landing data (M. Bouchon, pers.comm.).

The ‘wooden’ cluster comprises more than 75% of the wooden-vessel trips. This

cluster is mostly associated with short coastal trips (Fig. 5.5c). It also has a high

percentage of trips from 2006−2009. As mentioned in the introduction of this chap-

ter, wooden vessels have been gradually introduced into the VMS. A large increase

in the number of wooden-vessel trips monitored by VMS occurred in 2005 and the

trend continued until 2009 (Table 5.5). Reports from IMARPE indicate that there

was also a large increase in the number of wooden vessels operating per day at the

end of 2005, and that this trend continued until the end of 2008 (IMARPE, 2013);

so it is not just a VMS-coverage artifact. In 2009, the IVQ system was introduced,

and the sizes of both steel and wooden fleets significantly decreased (the total num-

ber of fishing vessels operating by day decreased in 72%, Bouchon et al., 2010b).

The concentration of fishing trips of this cluster between 7°S and 9°S matches the

spatial distribution of wooden vessels in the last years (M. Gutierrez, pers.comm.).

This clustering identification supports the evidence shown by Bertrand (2013) that

wooden and steel vessels present different spatial behaviors. The moves from mul-

tiple trajectories from steel and wooden vessels were modeled using random walks.

Steel vessels showed more diffusive behavior and explored wider areas. Conversely,
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wooden vessels showed less diffusion and explored smaller areas. Our results confirm

that steel and wooden vessels deploy different movement strategies.

The fourth cluster is the largest one and is mostly composed of steel-vessel and

NC trips. This cluster refers to ‘ordinary’ fishing trips (Fig. 5.5d). In relation to

all the fishing trips in the dataset, trips in this cluster show average patterns.

It was also expected to find a cluster composed of 2009 trips, corresponding to

the IVQ system. The fact that those trips were mostly distributed in two clusters

(‘wooden’ and ‘ordinary’) could imply that there were no great changes in fishermen

movement patterns and strategies when the race for fish went to an end. Interviews

with fishermen and fleet managers suggest that the introduction of the IVQ system

destabilized fishermen and companies strategies, and that they have been adapting

progressively to the new context. Consequently, more years of VMS data would be

required to accurately characterize changes in fishermen movement patterns with

the IVQ system.

In this work, we explored fishing trip heterogeneity and found that fishermen

personality, fleet segmentation and management regions conditioned 4 main fishing

trip strategies: (1) risk-taking exploration, (2) short Southern trips, (3) follower

wooden trips, (4) follower steel (ordinary) trips. These findings are key for under-

standing fishermen spatial behavior and effort.

From a methodological perspective, the HCA approach could also be used for

outlier detection. The criteria used for keeping only anchovy fishing trips in the

dataset is not free of errors (appendix A.1). In Figure 5.1, a few of the positioning

records seem to correspond to jack mackerel or prospection trips. Anchovy rep-

resents by far the main landing in the Peruvian purse-seiner fisheries (∼ 95% of

the total of anchovy, sardine, Jack mackerel and Chub mackerel landings tonnes in

2007; Montecino and Lange, 2009). Thus, even without the pre-treatment algorithm

(appendix A.1), only a small amount of non-anchovy trips would be mistaken as an-

chovy fishing trips. However, for a better identification of non-anchovy trips, it could

be appealing to explore the 17% of the trips that belong to cluster 2 and separate

them into sub-clusters, where one of them could be the outlier-non-anchovy-trip

cluster. Overall, the methodology presented allows investigating fishing trip pat-

terns at several levels of details (e.g., large clusters discriminating between the most

distinct patterns of behavior, or small clusters for identifying outliers).
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Figure 5.5: A fishing trip example associated to the first cluster (a), the second
cluster (b), the third cluster (c) and the fourth cluster (d). Red squares represent
fishing positioning records, yellow circles represent searching positioning records and
blue stars represent cruising positioning records.
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Chapter 6

Ecosystem scenarios shape

fishermen spatial behavior

“L’homme est la seule créature qui refuse d’être ce qu’elle est.”

– Albert Camus (L’Homme Révolté)

6.1 Introduction

Marine ecosystems are highly structured in space. Pelagic ecosystems, where habi-

tats are made of constantly moving water masses, are also highly dynamic in time

(Freón and Misund, 1999; Levin, 1992). Because those natural systems tend to be

out of balance (Pimm, 1991), it is fundamental to consider their variability in space

and time to understand the relative contributions of bottom-up and top-down con-

trols in their functioning (Gripenberg and Roslin, 2007; Matson and Hunter, 1992;

Polishchuk et al., 2013). Also, since each organism tends to feed on smaller organ-

isms, the rapid environmental variations tend to smooth out along trophic levels

(Mann and Lazier, 2006).

Limitations on observation data to examine such processes have been largely

overcome in the last decades thanks to new technologies and ecosystem models.

There are now, in several ecosystems, spatially explicit data available at fine time

resolutions on abiotic factors, prey and predator distribution and abundance (Bo-

grad et al., 2010; Boyd et al., 2004; Costa, 1993; Decker and O’Dor, 2003; Rutz and

Hays, 2009).

A few recent works undertook the study of the linkages between environmental

conditions, prey distribution and predators behavior in time and space. Croll et al.

115
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(2005) analyzed temporal lags in bottom-up physical and biological process and

observed that they have possibly translated into spatial mismatches when relating

whale abundance and physical forcing. They used relationships between upwelling,

primary production and euphausiid prey and whale foraging behavior for charac-

terizing Monterey Bay (California) as an important foraging area for blue whales.

Hazen et al. (2011) found that both environment factors (i.e. bottom depth, salin-

ity, temperature and turbulence level) and prey density were important for modeling

foraging activity of beaked whale in the Tongue of the Ocean, Bahamas. Santora

et al. (2012) showed significant coupling between physics (e.g. pycnocline depth,

salinity, temperature and wind, among others), primary productivity, micronekton

abundance and top predator counts in the Central California Current region.

Those studies identified critical processes and key areas that can be directly

useful in conservation, marine spatial planning, or in the management of human

activities in marine ecosystems. Nevertheless, while fishing is one of the main an-

thropogenic activities at sea, competing directly with natural predators, none of

those studies on spatial ecology from physics to top predators contemplate fisher-

men as part of the system. Admittedly, fishermen are peculiar top predators because

they rely on technology and are driven by a distinct currency than that of natural

predators. Nonetheless, in pelagic ecosystems water masses and fish schools are

constantly moving (Peraltilla and Bertrand, 2013; Swartzman et al., 2008). Thus,

fishermen do face the same uncertainty on prey localization as natural predators do

and their spatial behavior reflects their need for solving the same challenge. In that

sense, it has been shown that fishermen in the Peruvian anchovy fishery deploy sim-

ilar spatial foraging strategies to those of other animal predators (Bertrand et al.,

2007).

The Northern Humboldt Current System (NHCS) off Peru provides a great op-

portunity for studying the association between the dynamics of ecosystem compo-

nents in a bottom-up-controlled exploited ecosystem (Ayón et al., 2008b; Bertrand

et al., 2008b). First, the NHCS is submitted to an intense regional climatic vari-

ability at a variety of spatio-temporal scales (Chavez et al., 2008). The resulting

environmental scenarios directly determine the extent of the 3D anchovy habitat

(Bertrand et al., 2011, 2004a), which in turn conditions fish availability for the main

predators in this system, the fishermen (Bertrand et al., 2008b). Second, the NHCS

produces more fish per unit area than any other region in the world oceans and

sustains the world’s largest monospecific fishery (Peruvian anchovy or anchoveta,
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Engraulis ringens). To cope with the intense climatic variability, the management

of the anchovy fishery is adaptive, i.e. catch limits are re-assessed every ∼ 6 months

and opening and closure periods decided on the basis of daily monitoring of the

ecosystem, the fish population and the fishery (Chavez et al., 2008). The Peruvian

Marine Research Institute (IMARPE) is in charge of this intense monitoring. It

comprises satellite information on environmental conditions (e.g. sea surface tem-

perature, Chlorophyll-a and sea level anomaly, among others) in daily and weekly

resolutions. Fish population distribution and biomass are monitored through scien-

tific acoustic surveys (two to three times a year). The fishing activity is supervised

through landing statistics, Vessel Monitoring System (VMS) and on-board observers

reports (Bertrand et al., 2008c; Joo et al., 2011). The amount of available data makes

the NHCS a highly appealing ecosystem for analyzing its ecological dynamics. In

this highly-variable and data-rich ecosystem, Bertrand et al. (2008b) analyzed how

large scale oceanic forcing, via Kelvin waves, affected the coastal ecosystem (from

oceanography to fishermen). They pioneered the incorporation of fishermen as a

top predator for studying ecological dynamics and proposed contrasting scenarios of

coastal oceanography, anchovy distribution and fishing activity, during the passage

of coastally trapped upwelling and downwelling Kelvin waves.

The present work focuses more closely on the coastal processes in the NHCS,

and on the spatial response of fishermen to varying environmental and anchovy

conditions. In particular, we explore and quantify the associations between the dy-

namics of three ecosystem compartments: environmental conditions (Environment),

anchovy biomass and distribution (Anchovy) and fishermen spatial behavior (Fish-

ermen), for a ten-year period (2000 − 2009). Data on Environment and Anchovy

were issued from acoustic surveys performed by IMARPE and satellite observa-

tions. Data on Fishermen were based on VMS data (∼ 90000 fishing trips from

2000 to 2009), processed with a state-space model so that the nature of the be-

havior in which fishermen are engaged is known at each position (Joo et al., 2013).

Since environmental fluctuations tend to smooth out along trophic levels (Mann and

Lazier, 2006), we hypothesized that, from the three associations (i.e. Environment-

Anchovy, Anchovy-Fishermen and Environment-Fishermen), Anchovy-Fishermen

should be the strongest since it is a direct prey-predator relationship. Conversely,

Environment-Fishermen is expected to display the weakest association. The studied

decade does not encompass strong ENSO (El Niño Southern Oscillation) events. Sea-

son is thus expected to be the major scale of variability for environmental conditions.

We tested for differences between two seasonal modes, summer and spring/winter,
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within each ecological compartment and analyzed trends separately for each sea-

sonal mode. We finally propose ecosystem scenarios based on the linkages found

between the three compartments and discuss the potential use of fishermen spatial

behavior as ecosystem indicator.

6.2 Materials and methods

We focused on different time-periods from 2000 to 2009 such that concomitant data

on the environment, fisheries acoustic and VMS were available. In total 16 time-

periods were available, 6 in austral summer and 10 in austral winter/spring (Table

6.1).

Table 6.1: Number of fishing trips corresponding to each time-period.

Time-period Fishing trips

2000/06− 07 5839

2000/10− 11 5750

2001/03− 04 7012

2001/07− 08 865

2001/10− 11 1612

2002/02− 03 1368

2002/10− 11 6409

2003/10− 12 6262

2004/11− 12 8983

2005/11− 12 15252

2006/02− 04 2990

2006/11− 12 8593

2007/02− 04 2395

2008/02− 04 4611

2008/11− 12 8604

2009/02− 04 3151

6.2.1 Environmental data

For each time-period, we produced a description of the environment as detailed in

Table 6.2. We used Sea surface temperature (SST) from the AVHRR sensor of

NOAA satellites from 2000 to 2009. The chlorophyll-a (CHL) satellite data from
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2000 to 2007 were obtained from the SeaWiFS sensor and from 2008 to 2009 from

the MODIS sensor. The MODIS chlorophyll-a data were previously corrected on a

monthly basis to match the SeaWiFS data by using the common period between

both sensors (2002 − 2008). All satellite data, initially in a spatial resolution of 4

km and a weekly time resolution, were averaged by month and over the whole study

area. Then, for obtaining one representative value per time-period, an average was

computed for each of these variables.

To account for the vertical distribution of the oxygen minimum zone, a criti-

cal parameter of the NHCS (Bertrand et al., 2011), we computed the depth of the

oxycline (OXY), i.e. the depth at which the dissolved oxygen equals 2 ml.l−1. All

measurements were made from Niskin bottles and CTD data sampled during scien-

tific surveys run by IMARPE. For each time-period, the mean oxycline depth was

computed as a weighted average of monthly values, taking into account the number

of observations per month.

6.2.2 Anchovy data

Since 1983, IMARPE has been conducting on average two acoustic surveys per year

for monitoring fish population distribution and biomass. These surveys consist of

parallel cross-shore transects of ∼ 100 nm long, with a ∼ 15 nm spacing. Simrad

(kongsberg Maritime AS, Norway) scientific echosounders working at several fre-

quencies are used to estimate biomasses (see Castillo et al., 2009; Gutiérrez et al.,

2007; Simmonds et al., 2009). An extensive midwater-trawl sampling completes the

acoustic surveys for species identification. The nautical-area-backscattering coeffi-

cient (NASC, in m2.mn−2), an index of fish biomass (Simmonds and MacLennan,

2005), is recorded at each georeferenced elementary distance sampling unit (EDSU)

of 1 nm. From each acoustic survey, we extracted five descriptors of the spatial dis-

tribution of anchovy (Table 6.2): (i) the mean anchovy NASC, used as an index of

fish biomass (sA); (ii) an index of local biomass (s+
A), i.e. the mean anchovy NASC

for ESDU with presence of fish; (iii) an index of spatial occupation (ISO) i.e. the

percentage of ESDU with anchovy; and (iv) the center of gravity and the inertia of

the distance to the coast of anchovy NASC (DC and I, respectively).



120 Chapter 6. Ecosystem scenarios shape fishermen spatial behavior
T

ab
le

6.
2:

D
es

cr
ip

ti
on

of
E

n
v
ir

on
m

en
t,

A
n
ch

ov
y

an
d

F
is

h
er

m
en

va
ri

ab
le

s.

E
co

sy
st

em
V

a
ri

a
b

le
D

es
cr

ip
ti

o
n

D
a
ta

S
ca

le
co

m
p

a
rt

m
en

t
a
cr

o
n
y
m

ty
p

e
o
f

d
a
ta

S
S

T
A

v
er

a
g
ed

se
a

su
rf

a
ce

te
m

p
er

a
tu

re
fr

o
m

3
°S

to
1
6
°S

A
H

V
R

R
M

o
n
th

ly
a
n

d
fr

o
m

th
e

sh
o
re

u
p

to
th

e
2
5
0
0

m
is

o
b

a
th

(i
n

°C
)

d
a
ta

E
n
v
ir

o
n

m
en

t
C

H
L

A
v
er

a
g
ed

C
h

lo
ro

p
h
y
ll
-a

fr
o
m

3
°S

to
1
6
°S

S
E

A
W

IF
S

a
n

d
M

O
D

IS
M

o
n
th

ly
a
n

d
u

p
to

th
e

2
5
0
0

m
is

o
b

a
th

(i
n

m
g
.m

−
3
)

d
a
ta

O
X

Y
A

v
er

a
g
e

o
f

o
x
y
cl

in
e

d
ep

th
C

T
D

a
n

d
N

IS
K

IN
S

ci
en

ti
fi

c
fr

o
m

7
°S

to
1
6
°S

(i
n

m
)

su
rv

ey
s A

In
d

ex
o
f

g
lo

b
a
l

fi
sh

a
co

u
st

ic
b

io
m

a
ss

eq
u

a
l

to
O

u
tp

u
t

fr
o
m

a
co

u
st

ic
su

rv
ey

s
A

co
u

st
ic

lo
g
((
∑ n i=

1
N

A
S

C
i
/
n

)
+

1
)

(i
n

m
2
.n

m
−
2
)

(B
er

tr
a
n

d
et

a
l.
,

2
0
0
4
)

su
rv

ey

s+ A
In

d
ex

o
f

lo
ca

l
fi

sh
b

io
m

a
ss

eq
u

a
l

to
O

u
tp

u
t

fr
o
m

a
co

u
st

ic
su

rv
ey

s
A

co
u

st
ic

lo
g
((
∑ n i=

1
N

A
S

C
i
/
n

)
+

1
),
∀N

A
S

C
>

0
(i

n
m

2
.n

m
−
2
)

(G
u

ti
er

re
z

et
a
l.
,

2
0
0
7
)

su
rv

ey
A

n
ch

o
v
y

IS
O

In
d

ex
o
f

sp
a
ti

a
l

o
cc

u
p

a
ti

o
n

.
P

er
ce

n
ta

g
e

o
f

O
u

tp
u

t
fr

o
m

a
co

u
st

ic
su

rv
ey

s
A

co
u

st
ic

E
S

D
U

w
h

er
e

a
n

ch
o
v
y

is
p

re
se

n
t

(N
A

S
C

>
0
)

(G
u

ti
er

re
z

et
a
l.
,

2
0
0
7
)

su
rv

ey
D

C
C

en
te

r
o
f

g
ra

v
it

y
o
f

th
e

d
is

ta
n

ce
to

th
e

co
a
st

O
u

tp
u

t
fr

o
m

a
co

u
st

ic
su

rv
ey

s
A

co
u

st
ic

o
f

th
e

a
co

u
st

ic
a
ll
y

o
b

se
rv

ed
a
n

ch
o
v
y

(i
n

k
m

)
(G

u
ti

er
re

z
et

a
l.
,

2
0
0
7
)

su
rv

ey
D

C
=

∑ n i=
1

(d
c i

lo
g
(N

A
S

C
i

+
1
))
/
∑ n i=

1
lo

g
(N

A
S

C
i

+
1
)

I
In

er
ti

a
o
f

D
C

(i
n

k
m

)
O

u
tp

u
t

fr
o
m

a
co

u
st

ic
su

rv
ey

s
A

co
u

st
ic

I
=

∑ n i=
1

(d
c i
−

D
C

)2
lo

g
(N

A
S

C
i

+
1
)/

∑ n i=
1

lo
g
(N

A
S

C
i

+
1
)

su
rv

ey
D

u
r

F
is

h
in

g
tr

ip
d

u
ra

ti
o
n

(i
n

h
o
u

rs
)

C
o
m

p
u

te
d

fr
o
m

V
M

S
d

a
ta

F
is

h
in

g
tr

ip
D

is
t

D
is

ta
n

ce
tr

a
v
el

ed
d

u
ri

n
g

a
fi

sh
in

g
tr

ip
(i

n
n

m
)

C
o
m

p
u

te
d

fr
o
m

V
M

S
d

a
ta

F
is

h
in

g
tr

ip
M

a
x
.D

C
M

a
x
im

u
m

d
is

ta
n

ce
to

th
e

co
a
st

C
o
m

p
u

te
d

fr
o
m

V
M

S
d

a
ta

F
is

h
in

g
d

u
ri

n
g

a
fi

sh
in

g
tr

ip
(i

n
n

m
)

tr
ip

S
ea

rc
h
in

g
P

ro
p

o
rt

io
n

o
f

fi
sh

in
g

tr
ip

M
o
d

el
o
u

tp
u

t
fr

o
m

V
M

S
a
n

d
F

is
h

in
g

d
u

ra
ti

o
n

sp
en

t
se

a
rc

h
in

g
o
b

se
rv

er
s

d
a
ta

(J
o
o

et
a
l.
,

in
p

re
ss

)
tr

ip
F

is
h

er
m

en
F

is
h

in
g

P
ro

p
o
rt

io
n

o
f

fi
sh

in
g

tr
ip

M
o
d

el
o
u

tp
u

t
fr

o
m

V
M

S
a
n

d
F

is
h

in
g

d
u

ra
ti

o
n

sp
en

t
fi

sh
in

g
o
b

se
rv

er
s

d
a
ta

(J
o
o

et
a
l.
,

in
p

re
ss

)
tr

ip
C

ru
is

in
g

P
ro

p
o
rt

io
n

o
f

fi
sh

in
g

tr
ip

M
o
d

el
o
u

tp
u

t
fr

o
m

V
M

S
a
n

d
F

is
h

in
g

d
u

ra
ti

o
n

sp
en

t
cr

u
is

in
g

o
b

se
rv

er
s

d
a
ta

(J
o
o

et
a
l.
,

in
p

re
ss

)
tr

ip
B

ef
.F

is
h

in
g

A
b

so
lu

te
ti

m
e

fr
o
m

th
e

b
eg

in
n

in
g

o
f

th
e

M
o
d

el
o
u

tp
u

t
fr

o
m

V
M

S
a
n

d
F

is
h

in
g

tr
ip

u
n
ti

l
th

e
fi

rs
t

fi
sh

in
g

se
t

(i
n

h
o
u

rs
)

o
b

se
rv

er
s

d
a
ta

(J
o
o

et
a
l.
,

in
p

re
ss

)
tr

ip
k

S
h

a
p

e
p

a
ra

m
et

er
fr

o
m

ra
n

d
o
m

M
o
d

el
o
u

tp
u

t
fr

o
m

V
M

S
d

a
ta

V
es

se
l

m
o
v
es

w
a
lk

m
o
d

el
in

g
(B

e
r
tr
a
n
d

e
t
a
l.

in
r
e
v
ie
w
)

b
y

se
a
so

n
si

g
m

a
S

ca
le

p
a
ra

m
et

er
fr

o
m

ra
n

d
o
m

M
o
d

el
o
u

tp
u

t
fr

o
m

V
M

S
d

a
ta

V
es

se
l

m
o
v
es

w
a
lk

m
o
d

el
in

g
(B

e
r
tr
a
n
d

e
t
a
l.

in
r
e
v
ie
w
)

b
y

se
a
so

n

N
o
te
s:

N
A

S
C
i:

n
au

ti
ca

l-
ar

ea
-b

ac
k
sc

at
te

ri
n

g
co

effi
ci

en
t

at
it
h

ge
or

ef
er

en
ce

d
el

em
en

ta
ry

d
is

ta
n

ce
sa

m
p

li
n

g
u

n
it

(E
S

D
U

).
d

c i
:

d
is

ta
n

ce
to

th
e

co
as

t
at

th
e
it
h

E
S

D
U

.



6.2 Materials and methods 121

6.2.3 Fishermen spatial behavior

The fisheries management and VMS data have been described in the preceding chap-

ters. For this work, only fishing trips from the industrial fleet in the north-center

(3°S to 16°S) Peruvian coast were considered (the southern region was excluded

from the analysis because of its lesser contribution to the catches and a different

management policy). We report in Table 1 the number of fishing trips documented

for each time-period.

For each fishing trip, the following global indicators were computed: the dura-

tion (Dur), the total distance traveled (Dist) and the maximum distance from the

coast (Max.DC). Additionally we used two metrics, k and sigma, that characterize

the geometry of the fishermen movements (Bertrand et al., in review). They are

derived from the fit of a Generalized Pareto random walk model to the move length

distribution displayed in fishing trip trajectories. This random walk model involves

two parameters of interest: a shape parameter k that characterizes the movement

diffusion (finite tails with normal diffusion for k < 0, light tails with normal diffusion

for k ∈ [0; 0.5], and heavy tails with super diffusion for k > 0.5), and a scale param-

eter sigma (where sigma > 0) that characterizes the average length of the moves

used to search for fish. Super diffusion is characterized by the mixing of rare, long

and relatively straight movements with movement bouts composed of short moves

and high turning rates. Descriptors k and sigma were computed for each vessel from

the fishing trips performed within each time-period.

As in the preceding chapter, we also computed indicators on fishing activities in-

ferred with a hidden semi-Markov model trained on logbook data (Joo et al., 2013).

Those indicators were: the proportion of time spent searching (Searching), fishing

(Fishing) and cruising (Cruising), and the time spent from the beginning of the trip

until the first fishing set (Bef.Fishing).

6.2.4 Statistical analyses

A synoptic sketch of the statistical analyses between the ecosystem compartments

is reported in Figure 6.1. Univariate statistics were computed on each variable

for testing for differences between seasonal modes, characterizing overall tendencies

and potentially remarkable time-periods. The Wilcoxon rank sum test (Wilcoxon,

1945) was performed for testing mean differences between summer and winter/spring
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periods. Trends were computed using least trimmed squares robust regression

(Rousseeuw, 1984).
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Figure 6.1: Synoptic sketch of the statistical analyses.

For multivariate analyses, all variables were standardized. We carried out a PCA

(Principal Component Analysis; Pearson, 1901) for each compartment at the scale

of the time-periods to identify the main modes of variability and distinct scenar-

ios. For quantifying the linear association between the first principal component of

Environment, Anchovy and Fishermen, we computed the Pearson product-moment

correlation coefficient between each pair of first components. In addition, in order to

quantify the overall association between each pair of compartments (Environment

and Anchovy, Anchovy and Fishermen, and Environment and Fishermen) we used

RV coefficients (Escoufier, 1973). The RV coefficient is a multivariate generalization

of the squared Pearson correlation coefficient. RV values range between 0 and 1,

where 0 means no association and 1 means perfect association. The significance of

the RV coefficient was estimated by means of a permutation test (Heo and Gabriel,
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1998).

Finally, we performed a multiple coinertia analysis (Chessel and Hanafi, 1996)

between the three PCAs. The multiple coinertia analysis is a generalization of the

coinertia analysis (Dolédec and Chessel, 1994; Dray et al., 2003) for k tables (k > 2).

The coinertia analysis is a multivariate method for coupling two tables sharing the

same rows (individuals or variables). The tables must be previously analyzed by

separate inertia analyses (for instance, PCAs). The multiple coinertia analysis aims

at (i) calculating a synthetic table representing the common structure of the PCAs,

and (ii) comparing each PCA to this synthesis. RV coefficients measure the associ-

ation of each PCA and the synthetic table.

Statistical analyses were performed with R software (R Core Team, 2013). Ro-

bustbase package (Rousseeuw et al., 2012) was used for least trimmed regression,

FactoMineR package (Husson et al., 2013) was used for PCA and ade4 (Dray et al.,

2007) for multiple coinertia analyses.

6.3 Results

6.3.1 Univariate analyses

Series of environmental conditions are shown in Figure 6.2a,b,c. SST and CHL values

were higher in summer than in winter/spring periods (p < 0.001 for both variables)

and exhibited increasing trends (p < 0.01 for both variables) on winter/spring pe-

riods. For OXY no significant differences between seasons were observed and no

trend was observed either. Still, the October - December 2003 time-period (denoted

2003/10-12 hereafter) was characterized by a remarkably deep oxycline.

Fish distribution patterns also changed in time (Fig. 6.2d,e,f,g,h). The s+
A and

sA indexes differed significantly among seasonal modes (p < 0.01) and an increasing

trend (p < 0.01) was observed for s+
A in winter/spring periods. Two periods present-

ing the highest sA (and s+
A) values lied out of the trend: 2008/02-04 and 2002/02-03.

The former period, 2008/02-04, along with 2003/10-12, were also characterized by

the lowest ISO. Finally, 2000/06-07, 2000/10-11 and 2001/10-11 had the highest DC

and I.
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Figure 6.3: Marginal distributions and median by time-period for each Fishermen
variable: fishing trip duration (a), distance traveled (b), maximum distance from
the coast (c), absolute time from the beginning of the trip until the first fishing
set (d), proportion of trip duration spent searching (e), proportion of trip duration
spent fishing (f), proportion of trip duration spent cruising (g), shape parameter
from random walk modeling (h), scale parameter from random walk modeling (i).
Blue solid lines indicate significant trends (p < 0.01) over the whole studied period.
Here, the time-periods at the x axes are plotted at regular steps, but the trends were
actually fitted considering the real intervals between time-periods. Complete ranges
of values are shown in Figure 6.4; here, a zoom is made over the values associated
with the highest marginal distributions.

Since hundreds of fishing trips were comprised in each time-period (Table 6.1),

we analyzed the temporal evolution of both the median values and the marginal

distribution of each Fishermen variable. In order to facilitate visualization, a zoom

was made on the range of values associated with the highest marginals (Fig. 6.3).

The complete range of values is available in Figure 6.4.

Only Cruising showed significant differences between seasonal modes (p < 0.01).

Therefore, for Fishermen variables robust trends were computed for the whole series

without discriminating between seasonal modes. Negative trends were observed for

Dur, Dist, Bef.Fishing, Cruising and sigma (p < 0.0001). By contrast, Searching,

Fishing and k reported increasing trends (p < 0.0001). Indeed, medians of 2001/10-

11, 2003/10-12 and to a lesser extent 2002/10-11 presented the highest values associ-

ated with Dur, Dist, Max.DC, Bef.Fishing and Cruising. 2001/10-11 and 2003/10-12
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Figure 6.4: Marginal distributions and median by time-period for each Fishermen
variable: fishing trip duration (a), distance traveled (b), maximum distance from
the coast (c), absolute time from the beginning of the trip until the first fishing
set (d), proportion of trip duration spent searching (e), proportion of trip duration
spent fishing (f), proportion of trip duration spent cruising (g), shape parameter
from random walk modeling (h), scale parameter from random walk modeling (i).



6.3 Results 127

presented the highest variability for Dur, Dist, Max.DC, Bef.Fishing (marginal dis-

tributions in Fig. 6.3a,b,c,d). Conversely, in 2002/02-03, Dist, Max.DC, Bef.Fishing

and Cruising were low and Fishing was high.

6.3.2 Multivariate analyses

In order to simplify the interpretation of the analyses, we do not present here the

graphical representations of the spaces of individuals and variables of the PCAs.

Significant correlations between variables and PCAs are shown in Tables 6.3, 6.4,

6.5. We also present the scores of each time-period for the main principal compo-

nents (Fig. 6.5). For each score time-series, we provide an arbitrary classification

from (−) to (+) indicating how those scores impacted fishermen activity (Fig. 6.5).

Table 6.3: Significant correlations between Environment variables and their principal
components (p < 0.05).

Variables
PC1 PC2

(75%) (21%)

CHL 0.93 −
SST 0.94 −
OXY −0.71 −0.70

Table 6.4: Significant correlations between Anchovy variables and their principal
components (p < 0.05).

Variables
PC1 PC2

(60%) (23%)

s+
A 0.88 −

sA 0.84 −
DC −0.87 −

I −0.87 −
ISO − 0.94
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Figure 6.5: Time series of PCA scores for each ecosystem compartment. Percentage
of explained variance are in parentheses at the top of each subfigure. Red points
correspond to summer time-periods and blue points to winter and spring periods.
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such as downwelling Kelvin wave could deepen the oxycline. **This component is
only useful when comparing similar scenarios in terms of sA, s+

A and DC.
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Table 6.5: Significant correlations between Fishermen variables and their principal
components (p < 0.05).

Variables
PC1 PC2

(71%) (23%)

Fishing 0.92 −
k 0.70 −0.69

Searching 0.67 −
Dur −0.70 −

Max.DC −0.78 −0.59

Bef.Fishing −0.81 −
Dist −0.83 −

sigma −0.86 −
Cruising −0.93 −

Environmental conditions

In the Environment PCA, the first axis, which accounted for 75% of the variance,

was correlated with CHL and SST (positively), and with OXY (negatively, Table

6.3). These relations mainly refer to the seasonal cycles. During summer, waters

are warmer (higher SST), and due to a reduced cloud cover, more light penetrates

into the water column, what positively impacts the productivity at sea (higher CHL;

Echevin et al., 2008). Thermocline and oxycline are also shallower during summer

(lower OXY; Gutiérrez et al., 2011). The opposite phenomenon occurs during win-

ter. Scores reflected the seasonality: all summer periods had higher scores than

winter and spring periods (Fig. 6.5; p < 0.001 for differences in scores between

seasonal modes). The second component represented 21% of the variance and was

significantly correlated with OXY (Table 6.3). This component did not reflect a sig-

nificant seasonality. Although oxycline depth is related to the seasonal cycle, specific

large scale forcing events such as downwelling Kelvin Waves can deepen the oxycline

(Gutiérrez et al., 2008). Within the studied period, 2003/10-12 and 2007/02-04 had

the lowest scores (deepest oxycline depth) for this component (Fig. 6.5).

Anchovy distribution

The first principal component, accounting for 60% of the variance, was positively

correlated with sA and s+
A, and negatively correlated with DC and I (Table 6.4).

This axis can be interpreted as an index of fish biomass and proximity to the coast.
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Scores reflected, although with less intensity, the seasonality observed in the first

axis of the Environment PCA (Fig. 6.5; p < 0.01). A significant increasing trend in

time was observed for this first component (p < 0.01) through a linear regression.

The second component, explaining 23% of the variance, was significantly correlated

to ISO (Table 6.4). It can be seen as fish evenness, and it needs to be interpreted

considering the scenarios in terms of sA, s+
A and DC: high evenness is favorable to

fishermen activity if the global biomass is high, since there is lot of anchovy every-

where. On the opposite, if the biomass is low a high evenness means highly dispersed

anchovy (low s+
A), which are difficult to catch (Bertrand et al., 2004b). The latter

scenario corresponds to 2003/10-12, which had by far the lowest score (Fig. 6.5).

Fishermen spatial behavior

Due to the relatively high number of variables for the small number of individuals,

we discarded from the multivariate analyses the variables presenting very strong

correlations (r > 0.9; i.e. Dist., Bef.Fishing and Dur, all of them strongly correlated

with Cruising). We also discarded Searching since the proportions of the time spent

Cruising, Fishing and Searching sum to one (no variable should be expressed as a

linear combination of others). Overall, we used Max.DC, Fishing, Cruising, k and

sigma. The other variables were still used as supplementary variables and projected

in the PCA space (Fig. 6.6). The first axis, explaining 71% of the variance (Table

6.5), can be viewed as fishermen activity budget. High values on this activity bud-

get axis correspond to easy foraging (more time is allocated to searching and fishing

than to cruising), while low values indicate tricky foraging (more time is dedicated

to cruising, longer distances are traveled, more time is spent before the first fish-

ing set, farther distances from the coast are traveled). Through a linear regression,

scores showed an increasing trend (towards easy foraging) with time (p < 0.0001),

taking negative values until 2005/11-12 (except 2002/02-03) and positive then after

(Fig. 6.5). The second component, explaining 23% of the variance (Table 6.5), had

significant correlations with only two variables (k and Max.DC).

Environment vs. Anchovy vs. Fishermen

Regarding the association between the first principal components only, the activity

budget component of Fishermen PCA was strongly correlated with the fish biomass

and proximity component of Anchovy PCA (0.83; p < 0.0001). The latter was also
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Figure 6.6: PCA of Fishermen. Components 1 and 2

correlated with the seasonal cycle component of Environment PCA (0.81; p < 0.001).

The seasonal cycle was also correlated with activity budget, though more loosely

(0.76; p < 0.001). As we hypothesized and consistent with the principal compo-

nent correlations, RV coefficients were likewise larger for more direct relationships,

i.e. Environment and Anchovy (0.61; p < 0.001) and Anchovy and Fishermen (0.63;

p < 0.001) than for the less direct one: Environment and Fishermen (0.56; p < 0.01).

Those significant associations provide thus a powerful way to quantify the strength

of the relationships between ecosystem compartments (Fig. 6.7).

Figure 6.7: RV coefficients for each pair of ecosystem compartments: Environment-
Anchovy, Anchovy-Fishermen and Environment-Fishermen
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A multiple coinertia analysis was applied to Environment, Anchovy and Fish-

ermen PCAs (Fig. 6.8). The multiple coinertia space was composed of two axes,

accounting for 73% and 17% of the variance each. RV coefficients between the syn-

thetic table and each of the compartments were 0.67, 0.73 and 0.75, respectively

(p < 0.0001 for all cases). High SST and CHL values were strongly related to high

s+
A (local biomass) and Fishing, and low Cruising, DC and I (distance from the coast

of anchovy and its inertia). To a lesser extent, high SST and CHL were also related

to high sA and low Max.DC (distance to the coast of fishermen). Deep oxycline

(OXY) was partly associated with low sA and ISO (anchovy spatial occupation),

and high Max.DC. Low ISO was also associated with high k (diffusivity of fisher-

men movements). Regarding the time-periods, some of the most remarkable ones

already depicted in the preceding analyses were: 2008/02-04, 2002/02-03, 2003/10-

12 and 2001/10-11. 2002/02-03 was characterized by a superficial OXY, very high

ISO and sA, and to a lesser extent, high SST, CHL, s+
A and Fishing. 2008/02-04 was

characterized by the highest SST, CHL, s+
A and Fishing, and low DC, I, Cruising and

Max.DC. 2003/10-12, on the contrary, corresponded to the deepest OXY, the lowest

ISO, low sA, the highest Cruising, high Max.DC and k. 2001/10-11 corresponded to

the lowest SST, the highest I, a very high ISO, the highest Max.DC and low Fishing.

d = 0.5d = 0.5

SST

CHL

OXY

sA 

sA
+ 

ISO

DC
I
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Fishing

Cruising

k

sigma
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Figure 6.8: Multiple coinertia analysis between Environment, Anchovy and Fisher-
men compartments. Left panel: projection of variables in the coinertia space. The
definition of each variable is in Table 6.2. Fishermen variables are in black, An-
chovy in blue and Environment in red. Right panel: projection of time-periods in
the coinertia space. Each period has three associated points, corresponding to the
position of the period described by each compartment. The position of the label
of each period corresponds to its location according to the synthetic table. Roman
numerals indicate the different quadrants of scenarios to which the time-periods are
associated.
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6.4 Discussion

6.4.1 Environment, Anchovy, Fishermen and the bottom-

up transfer

In this study, we explored and quantified the associations between the dynamics of

three ecosystem compartments (Environment, Anchovy and Fishermen) and showed

that (i) ecosystem scenarios – abiotic and biotic conditions – do shape fishing spatial

behavior, and (ii) the association is stronger for direct links (Environment-Anchovy

and Anchovy-Fishermen; Fig. 6.7). This is consistent with a bottom-up transfer,

which was already evidenced by Bertrand et al. (2008b) when analyzing the effect

of upwelling and downwelling Kelvin waves on several descriptors of the Peruvian

coastal oceanography, anchovy distribution and fishing fleet behavior. They charac-

terized contrasting ecological scenarios that corresponded to strong El Niño events

(warm scenarios) and to average upwelling periods (cold scenarios).

Unlike Bertrand et al. (2008b), we focus on the coastal processes of the NHCS,

and our studied period, 2000 − 2009, does not encompass strong El Niño events,

but only ‘weak’ events (2002-03, 2004-05 and 2009-10). These events correspond to

‘El Niño Modoki’ or ‘Central Pacific El Niño’ that are distinct from the extraor-

dinary warm events such as the ones from 1982-83 and 1997-98 (Takahashi et al.,

2011). When Central Pacific El Niño occurs, the conditions off Peru can even be

slightly cooler than average (Dewitte et al., 2012), far from the archetypal El Niño

effects on the Peruvian ecosystem (Alheit and Ñiquen, 2004; Barber and Chavez,

1983; Bertrand et al., 2004a). The studied period therefore lies within the dominant

ecosystem state corresponding to an average ‘upwelling dominant scenario’ without

extreme El Niño events (Bertrand et al., 2008b). In this context, the seasonal scale

becomes the scale of greatest environmental variability.

An important contribution of our work concerns the Fishermen compartment.

Based on statistics computed from an unprecedented rich dataset (spatially-explicit

data from ∼ 90000 fishing trips), we showed that Fishermen spatial behavior can be

seen as a function of anchovy biomass and distribution, and environmental condi-

tions. Fishermen-Anchovy association (0.63) gave evidence that, despite the avail-

able technology and all the economic issues involved, uncertainty on prey location

is a major driver of fishermen spatial behavior. That confirms that, as a conse-

quence, fishermen deploy spatial foraging strategies comparable to that of other
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animal predators (Bertrand et al., 2007). Fishermen-Environment association was

not at all despicable (0.56), showing that fishermen behavior is sensitive to changes

in environmental conditions, most likely through transfer via Anchovy (RV = 0.61

for Environment-Anchovy).

The correlations coefficients between the first principal components had the same

ranks of associations than the RV coefficients, but stronger (75%, 60% and 71% for

Environment, Anchovy and Fishermen, respectively). Looking closely at the trends

of those first principal components (Fig. 6.5), the strong seasonality observed for En-

vironment (seasonal cycle component) is less pronounced for Anchovy (fish biomass

and proximity) and almost not noticeable for Fishermen (activity budget). Con-

versely, the marked increasing trend observed for Fishermen, is blurred for Anchovy

and then for Environment by the seasonal variability. Our results constitute evidence

of high-frequency environmental variations being smoothed out through trophic lev-

els (Di Lorenzo and Ohman, 2013; Mann and Lazier, 2006).

How environmental fluctuations influence population dynamics and animal be-

havior are questions that have been examined in several studies. McManus and

Woodson (2012) showed that the more organism size and motility increase, the

weaker are the relations between organism behavior and physical processes. Other

studies (e.g. Greenman and Benton, 2003; Miramontes and Rohani, 1998; Petchey,

2000) showed transfer of environmental variability in ex situ and theoretical popu-

lations. Rouyer et al. (2012) showed, using empirical data, that mortality of larger

fish lead to more prevalent short-term fluctuations in fish populations. However,

to our knowledge, no work had shown empirical evidence of smoothed out transfer

through several ecosystem compartments, from the environment to top predators.

Here we provide – for the first time – empirical evidence of (1) bottom-up and

smoothed out transfer of the high-frequency environmental fluctuations through

the main compartments of an ecosystem (i.e. seasonal effect through Environment-

Anchovy-Fishermen); and (2) magnification of low-frequency fluctuations by trophic

transfer (i.e. increasing trend through Fishermen-Anchovy-Environment). Further-

more, shift occurred in 2005/11-12 towards a weaker variability but a positive trend

in Environment and Anchovy PCA scores (Fig. 6.5). Such shift was also observed

in Fishermen that presented more favorable activity budgets (higher scores) from

2005/11-12. For each compartment, variability – computed as the sum of squared

residuals from a fitted linear regression – was higher before the shift (2005/11-12)

than after (Table 6.6). Moreover, variability measures before the shift decreased
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when ecological levels rose.

Table 6.6: Sum of squared residuals

From 2000/06− 07 From 2005/11− 12
Compartment to 2004/11− 12 to 2009/02− 04
Environment 10.88 1.24
Anchovy 6.77 2.26
Fishermen 2.58 1.31

6.4.2 Fishermen response to ecosystem scenarios

Based on the statistical analyses, we constructed four ecosystem scenarios (Fig. 6.9).

Each scenario belonged to a distinct quadrant in the coinertia space (Fig. 6.8, right

panel). The first two scenarios correspond to overall favorable ecosystem conditions

and are associated with the time-periods 2002/02-03 and 2008/02-04 while the third

and forth are less favorable and can be illustrated by the time-periods 2003/10-12

and 2001/10-11. Here, we analyze and discuss those scenarios taking into account

that changes in biomass of organisms are not always simultaneous to changes in en-

vironmental conditions (if bad environmental conditions can trigger mortalities and

translate into low biomasses almost instantaneously, good environmental conditions

will affect recruitment, producing increased population biomass with delay); instead,

patterns of geographic distribution or organism movements may adjust rapidly to

physical forcing (Bertrand et al., 2008b).

The favorable scenarios

Scenarios I and II (Fig. 6.9, upper panels), illustrated by the time-periods 2002/02-

03 and 2008/02-04, were characterized by high SST (relatively to the range of tem-

peratures encompassed in our dataset), high primary production and a shallow oxy-

cline. Under both scenarios, anchovy was abundant and close to the coast. High SST

and CHL values characterized productive summertime conditions (Echevin et al.,

2008; Gutiérrez et al., 2011) with cold coastal waters close to the coast that favored

locally-concentrated anchovy biomass (Gutiérrez et al., 2007; Swartzman et al.,

2008). Evidence of positive relation between anchovy acoustic biomass and oxy-

cline depth was also shown by Bertrand et al. (2011). They suggested that anchovy

is capable of surviving in areas where the oxygen minimum zone is very shallow,

where they escape from predation by larger fish that need more oxygen. The two
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scenarios described above represent favorable conditions for fishermen because fish

is easily catchable. Overall, fishermen had an efficient activity budget under both

conditions: more time was spent fishing rather than cruising and vessels did not

need to go far from the coast. Nevertheless, in 2008/02-04 (Fig. 6.9, right-upper

panel), local biomass was higher, and highly concentrated near the coast. Compared

to 2002/02-03, this scenario was even more favorable for fishermen not only in terms

of activity budget but also in movement geometry. Strong patchiness of anchovy led

to more diffusive spatial behavior of fishermen (Bertrand et al., 2007, 2005). Since

anchovy patches were very close to the coast, fishermen did not need to go far to

fish, so the average length of the moves was very small. Because fish was very close

and highly patchy, only a small proportion of time was spent cruising; most of the

time they were searching and fishing (Fig. 6.3). That translated into movements

composed of a large proportion of small moves (searching behavior within fish ag-

gregation) and a small proportion of large moves (straight transit between port and

anchovy aggregation), creating a super diffusive, Lévy-like movement.

Conversely, in 2002/02-03 (Fig. 6.9, left-upper panel) anchovy was spread over

more space and exhibited a lower local biomass than in 2008/02-04. That meant

that, in spite of the overall availability of anchovy, it was not very patchy so it

pushed fishermen to visit more patches to fill the vessel hold. Thus, the relationship

rare-large-moves vs. numerous-small-moves was not observed; instead moves were

about the same length, producing a normally diffusive movement. Nonetheless, fish

was close to the coast, so the average length of the moves was small.

The unfavorable scenarios

Scenarios III and IV (Fig. 6.9, lower panels), illustrated by the time-periods 2003/10-

12 and 2001/10-11, were characterized by low SST (relatively to the range of tem-

peratures encompassed by our dataset), low primary production and deep oxycline.

In both scenarios, anchovy was scarce. Low SST and CHL characterized winter con-

ditions (Echevin et al., 2008; Gutiérrez et al., 2011), associated to low local biomass

(Gutiérrez et al., 2007).

In 2003/10-12, the extent of cold coastal upwelling waters was very limited, and

so was anchovy habitat (Bertrand et al., 2004a; Swartzman et al., 2008), explaining

the lowest ISO of the series. Although anchovy was not too far from the coast, it

was very scarce (the lowest sA value of the series), concentrated in very few spots
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and most likely deep (since oxycline was remarkably deep). This corresponded to

an adverse scenario for fishermen. For starters, fishermen went far from the coast

and made fishing trips that lasted longer (Fig. 6.3) due to the scarceness of anchovy

and the difficulty to find them. They spent most of the time cruising, and low

time searching and fishing. Since the scarce anchovy was concentrated (low ISO),

this led to super diffusive movements (less diffusive than in Scenario II). Fishermen

made few large moves – ’large’ compared to the ’small’ ones – looking for a zone

they presumed to be of high prey density, and many small moves within these zones

trying to find attractive densities of prey to fish. Since fishermen went far from the

coast looking for fish, the average length of moves (large and small all together) was

higher than in Scenario II.

2001/10-11 did not stand out from the group of time-periods of quadrant IV in

the coinertia space (Fig. 6.8, right panel). However, it did stand out in the uni-

variate analyses, so we chose it for characterizing a forth scenario. In 2001/10-11,

the extent of cold coastal upwelling waters was high, and so was the area occupied

by anchovy (Bertrand et al., 2004a; Swartzman et al., 2008). Anchovy distribution

was even but extended very far from the coast in the form of spare aggregations.

This was a difficult scenario for fishermen too, mostly expressed through the high

variability in their behavior (the highest variability in most Fishermen variables;

Fig. 6.3 and 6.10). In general, fishermen went farther from the coast looking for

prey. Because scarce anchovy was distributed in many ESDUs, close and far from

the coast, fishermen seemed to use normally diffusive movements, moving constantly

between aggregations of dispersed anchovy. That spatial behavior produces ineffi-

cient activity budgets, since most of the time at sea was spent cruising between

aggregations and going far from the coast, rather than fishing/searching. Moreover

and as a consequence, the average length of the moves was larger.
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Figure 6.10: Series of variances of Fishermen variables.

It is important to notice that both unfavorable scenarios presented the greatest

variability in fishermen spatial behavior among all the studied periods (greater in

2001/10-11 than in 2003/10-12; Fig. 6.3 and 6.10). It may evidence that in scenar-

ios of high accessibility to prey, fishermen act more homogeneously, as it is easy for

everyone to find fish and to catch it. But when conditions are tricky, each fisherman

manages risk differently, and personal strategies count more. This type of behavior

is likely to be enhanced in El Niño/La Niña conditions. It would be appealing to

explore those scenarios.

6.4.3 Fishermen behavior and ecosystem approach to fish-

eries

This work provides a better understanding of how fishermen behavior is shaped by

changes in environment and prey conditions. We call it spatio-temporal or spatial

behavior because it is characterized by spatial and temporal descriptors of fishing

trips (e.g. distance traveled, maximum distance to the coast, duration of the fishing
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trip, time spent cruising, fishing, etc.).

As stated by Boyd et al. (2004), we intuitively think in terms of space and time

dimensions partly because these are the easiest to measure but there are many other

dimensions that characterize an animal’s – or in this case human’s – state. Some

other variables may explain an important part of the behavior variance, such as

the vessel holding capacity, the personality of the captain, oil and fish meal prices,

technology improvements, government management measures for specific seasons,

company strategies and tactics (i.e. how many vessels to deploy each day and in

which zones, at which factories to land the fish), the degree of competition or co-

operation between fishing vessels. Taking into account these other variables would

improve our understanding of fishermen behavior, which is under the joint influence

of economics, politics, oceanic and biological conditions (Wilen, 2004). A remaining

challenge is the characterization of the collective behavior, since we always consider

all fishing trips as independent from the others (the same approach is usually taken

in animal behavior; Boyd et al., 2004). Despite we did not considered all these po-

tential factors, we have shown that prey availability and environmental conditions

already play a great and significant role in shaping fishermen behavior, at least at

the scale of average characteristics of fishing trips during two or three months peri-

ods.

In synthesis, in this study we showed how ecosystem scenarios shape fishermen

spatial behavior. We also provided empirical evidence of bottom-up and smoothed

out transfer of the high-frequency environmental fluctuations and magnification of

low-frequency fluctuations by trophic transfer through the ecosystem compartments.

Top predators are increasingly seen as integrators of the state of the ecosystem they

inhabit (Boyd et al., 2006). In the need for information to support the ecosystem ap-

proach to fisheries (EAF; Browman and Stergiou, 2004; Garcia and Cochrane, 2005;

Jennings, 2005), top predators could be used as indicators of the ecosystem they

inhabit. In the bottom-up dynamics we described, Fishermen PCA scores could be

considered for use as ecosystem indicators of ecosystem scenarios. However, to test

for the robustness of such indicators it is necessary to rely on larger time series en-

compassing strong El Niño/La Niña events, in order to cope with scales of variability

in the NHCS that have not been included in the studied period. Implementation

of an EAF management would also require understanding the interactions between

fishermen and other top-predators competing for the same prey (e.g. seabirds and

mammals; Bertrand et al., 2012). Indeed, understanding the dynamics between
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fishermen, other predators and ecosystem scenarios is crucial for incorporating con-

servation plans into the EAF management (Hooker et al., 2011). Such aim can

be pursued if data on seabirds and mammals are available via bio-logging devices,

which is the case in Peru (e.g. Bertrand et al., 2012). All these reasons highlight

the importance of spatio-temporal data on top predators, including fishermen, for

fisheries ecology and sustainable management of the fisheries (Hinz et al., 2013).
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Chapter 7

Fishermen spatial behavior and

fish acoustic biomass: two sides of

the same coin?

“The observer imposes a perceptual bias, a filter through which the system is viewed.

(..) The challenge is the familiar one of trying to understand patterns observed at

one level of detail in terms of mechanisms that are operating on other scales.”

– Simon Levin (The Problem of Pattern and Scale in Ecology)

7.1 Introduction

Prey spatial structure and dynamics condition predator’s spatial behavior (e.g.,

Fauchald et al., 2000; Rose and Leggett, 1990). Indeed, predator’s search for prey

could be regarded as a search for spatial co-occurrence with its prey. Therefore, the

study of foraging behavior contributes to understanding prey spatial distribution

and dynamics. One of the most influential models in the literature for studying spa-

tial allocation of foragers is known as the ideal free distribution (IFD; Fretwell and

Lucas, 1969). When resources are distributed among a number of distinct areas, and

when foragers must choose among those areas, the IFD in its simplest form predicts

that the proportion of predators present in each aggregation is proportional to the

available resource; this is based upon several assumptions (Bernstein et al., 1991):

(i) individual foragers are ‘ideal’, i.e., they seek to and are able to choose the area

that maximizes fitness rewards; (ii) they are ‘free’, i.e., they experience no cost of

moving between feeding areas; (iii) they are ‘equal’, genetically and otherwise; and

(iv) predation does not affect the aggregations and so their is a permanent regener-

ation of the resources, i.e., the prey population.

143
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The IFD theory could be a good starting point for characterizing fishermen spa-

tial behavior in relation to fish; it has been applied in several works in fisheries

science (Gillis, 2003; Gillis et al., 1993; Rijnsdorp et al., 2000; Swain and Wade,

2003). Nonetheless, IFD hypotheses may be far from reality, particularly in pelagic

fisheries. In pelagic ecosystems, water masses and fish schools are constantly mov-

ing (Bertrand et al., 2008a; Peraltilla and Bertrand, 2013; Swartzman et al., 2008),

so fishermen face great uncertainty on prey localization; i.e., they are not ideal

foragers. Moreover, fuel limitations and, in some fisheries, the race for fish (e.g.,

Aranda, 2009), make the ‘free’ hypothesis unrealistic. Fishing vessels are neither

‘equal’. Differences in spatial behavior and effort may be due to factors such as ves-

sel sizes, technology used and captain’s skills (e.g., Aranda (2009); Gaertner et al.

(1999); Rijnsdorp et al. (2000); Vázquez-Rowe and Tyedmers (2013) and Chapter

5). Concerning the regeneration of prey aggregation, it has been shown that inten-

sive fishing can cause local depletion (e.g., Bertrand et al., 2012). For those reasons,

some works have used modified versions of the IFD; for example, Poos et al. (2010b);

Poos and Rijnsdorp (2007) incorporated interference competition and spatial seg-

regation into IFD-based modeling. However, other works strongly reject the IFD

theory for foraging movement (e.g., Pierce and Ollason, 1987). It thus seems imper-

ative to assess to what extent fishermen spatial behavior can be used as indicator

of fish spatial distribution.

Spatially explicit information on fishermen behavior can be obtained from Vessel

Monitoring System (VMS) data. Efficient methods have been developed for obtain-

ing high resolution spatio-temporal information on fishermen activities or behavioral

modes (e.g., searching, fishing, cruising) from VMS positioning data (see Bertrand

(2013) and Chapter 2 for a review). For example, in Walker and Bez (2010), hidden

Markov models were used for inferring fishermen activities (i.e., cruising, tracking,

stop and fishing) from VMS data on tuna purse-seiners in the Indian Ocean. Then,

the probability of tune presence over a gridded map was inferred for each month

from the time spent at each activity, using non-linear geostatistics Walker et al.

(submitted). Due to the high migratory behavior of tuna, their habitat is too wide

to prospect through scientific surveys. Thus, the maps of probability of presence

elaborated could not be confronted and validated with other sources of data on tuna

distribution.

Other pelagic fisheries do perform scientific acoustic surveys in a regular basis
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for inferring spatial distribution and abundance of fish (Simmonds and MacLen-

nan, 2005). An index of fish biomass is integrated for each georeferenced elemen-

tary distance sampling unit (EDSU) of 1 nm along the survey track. Then, those

transect-based data are interpolated for the whole area of interest, typically based

on geostatistical modeling.

Studying VMS and acoustic data could be like looking at fish through different

glasses: fishermen and scientists perspectives. For inferring fish distribution from

fishermen spatial behavior, the sampling method is rather preferential since trajec-

tories are directed towards where fishermen expect to find large fish patches. For

the scientific surveys, the sampling design is systematic (Fig. 7.1). Another impor-

tant difference lies in their spatio-temporal scales. VMSs often provide positioning

records at a frequency of ∼ 1 per hour (Bertrand, 2013). Because a fishing fleet

spatially distributes throughout the whole fishing zone, analyzing the VMS records

of an entire fleet means being able to cover, in general, the extent of the studied

area every hour. This would provide snapshots of the vessels distribution – and

thus behavior and effort – almost continuously (like photographs in burst mode).

By contrast, acoustic data (echo responses) are collected every second, and acous-

tic biomass estimations are typically computed for each EDSU. Before obtaining a

‘pseudo-snapshot’ of the acoustic biomass and distribution, the survey track must

be completed, which can take from weeks to months. Therefore, comparing the

‘snapshots’ obtained from both datasets is not straightforward. On the other hand,

precisely because of the different nature of those data, the comparison is highly ap-

pealing.

We aim at evaluating the extent to which a VMS-based indicator of fish presence

relates to acoustic biomass estimations. For that matter, we use VMS data from

the Peruvian purse-seine anchovy (Engraulis ringens) fishery, the world’s largest

monospecific fishery. In this fishery, Bertrand et al. (2008c) applied an Artificial

Neural Network (ANN) on a 2000-2002 VMS dataset covering a small zone off Peru,

for inferring fishing set positions. They found significant monthly co-variations be-

tween spatial patterns (distance to the coast and clustering index) of fishing sets and

fish acoustic biomass. At the scale of a fishing trip, management, fleet segmentation

and skipper’s personality were the main drivers found for trip patterns (Chapter

5). At the scale of a fishing season, a strong and significant – though not perfect

– association was found between fishermen spatial behavior and fish biomass and

distribution (Joo et al., in review).
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In this work, we analyze three anchovy fishing seasons in the NHCS. We use

trajectory data from 11741 fishing trips, documented by 314214 VMS positioning

records. Each record is associated with a given activity (i.e., fishing, searching and

cruising) using a calibrated and validated hidden semi-Markov model (Joo et al.,

2013). We use the local density of these activities to build an indicator of anchovy

presence and then interpolate this indicator for the whole fishing area off Peru using

geostatistics. Next, we compare the inferred maps to those obtained based on fish

acoustic biomass and we evaluate the strength of the correlation between spatial

patterns of both fishermen and fish. In the light of our results, we discuss to what

extent fishermen spatial effort could be used as proxy of fish spatial distribution.

7.2 Materials and methods

7.2.1 Anchovy data

Since 1983, IMARPE has been conducting on average two acoustic surveys per year

for monitoring fish population distribution and biomass. These surveys consist of

parallel cross-shore transects of ∼ 100 nm long, with a ∼ 15 nm spacing (Fig. 7.1).

Simrad (kongsberg Maritime AS, Norway) scientific echosounders working at distinct

frequencies are used to estimate biomasses (see Castillo et al., 2009; Gutiérrez et al.,

2007; Simmonds et al., 2009). An extensive midwater-trawl sampling completes the

acoustic surveys for species identification. The nautical-area-backscattering coeffi-

cient (NASC or sA, in m2.mn−2), an index of fish biomass (Simmonds and MacLen-

nan, 2005), is recorded in each georeferenced elementary distance sampling unit

(EDSU) of 1 nm. NASC is then log-transformed and, for purposes of this study,

scaled from 0 to 1 for facilitating the comparison with a proxy of probability of

anchovy presence. This scaled log-transformed NASC is henceforth called acoustic

biomass. For this study, we selected data from three acoustic surveys corresponding

to the following time-periods: (i) March-April, 2001; (ii) November-December, 2008;

and (iii) December, 2009.

7.2.2 Fishermen data

Satellite tracking by VMS is mandatory for the whole Peruvian industrial fishing

fleet since 2000. Vessel positions (±100m of accuracy; ∼ 1 record per hour) for
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Figure 7.1: Typical survey design of an acoustic survey off Peru (blue line).

tens of thousands of fishing trips are thus available for scientific purposes since (e.g.

Bertrand et al., 2007, 2005, 2008b,c, 2012; Joo et al., 2011, 2013). We report in Table

7.1 the number of fishing trips documented for each time-period. Pre-processing of

VMS data are performed based on the criteria and algorithms described in Bertrand

et al. (2007, 2005); Joo et al. (2011) and are detailed in appendix A.

Another source of information regarding fishing activities is IMARPE’s program

of on-board observers. For ∼ 1% of the fishing trips, on-board observers record

the location and time of three main activities: fishing, searching and cruising (i.e.

traveling following a predetermined course). In order to infer the activities for the

remaining 99% of the fishing trips from VMS data only, a supervised hidden semi-

Markov model was trained and validated using the on-board observer dataset (Joo

et al., 2013). This model reached a mean accuracy of 80% in the determination of

the correct activities from the VMS data.

A synoptic sketch of the methodology from this chapter is shown in Figure 7.2.

We will now describe each one of those analyses.

7.2.3 Composite maps

Because of the highly dynamic movement of fishing vessels and the mismatches in

time-resolution and space-coverage between acoustic biomass and VMS data, instead

of using a map aggregating all the behavioral modes corresponding to the period

of time of the acoustic survey, a composite map is computed for each time-period.
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Table 7.1: Number of fishing trips and VMS records corresponding to each time-
period.

Time-period
Fishing VMS Fishing Searching Cruising

trips records* records records records

2001 03/12 to 04/10 3795 82795 29416 22362 31017

2008 11/23 to 12/12 5063 101496 35166 37875 28455

2009 12/08 to 12/29 2883 63262 20185 23136 19941

Note:

*Number of VMS records after removing the ones from the last cruising segment from
every fishing trip.

It consists in dividing each time-period (Table 7.1) into groups of ∼ 5 days; then,

in separating the off Peru region according to the acoustic track: the latitudinal

frontiers for 5-days periods are recovered for applying them in the behavioral mode

maps. That way, each 5 days of acoustic biomass will be compared with concomitant

5 days of VMS-based data (Fig. 7.9).

7.2.4 Proxy of anchovy presence probability

Some basic assumptions are made a priori in order to construct this proxy. First, we

assume that fishermen decide to fish due to a direct observation of a fish aggregation.

Second, we assume that when a fishing vessel is in a searching mode, there is a non

negligible probability of fish presence. Third, we assume that when a fishing vessel

is cruising, no fish has been observed. These three assumptions were also adopted in

Walker (2010). As a fourth assumption, we suppose that the last cruising segment

in a fishing trip (after the last searching or fishing activity), fishermen have decided

to go straight to the arrival port or factory, regardless of the amount of fish in the

way. Thus, the last cruising segment of each trip is considered non informative and

removed from the dataset. The number of records corresponding to each time-period

is reported in Table 7.1.

The fishing area, from 3°S to 19°S and from the coastline (at ∼ 70°W or west) to

84°W, is divided into grid cells of 5 km × 5 km. The number of fishing, searching

and cruising activities in each cell is computed. Then, a proxy of probability of prey

presence P , henceforth called presence proxy, is computed for each cell:
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P =
(F × 1) + (S ×WS) + (C × 0)

F + S + (C ×WC)
=

F + (S ×WS)

F + S + (C ×WC)
(7.1)

where F, S and C are the number of VMS records corresponding to fishing,

searching and cruising activities in the cell, respectively. WS ∈ [0, 1] is the weight

of the searching activities for the presence proxy, and WC ∈ [0, 1] is the weight of

the cruising activities.

The weights associated with fishing, searching and cruising activities in the nu-

merator correspond to assumptions 1, 2 and 3. If WC = 1, the denominator of P is

the number of VMS records in the cell, and P is the weighted density of activities

in the cell. However, we do not know to which extent cruising data is actually in-

formative. In other words, it may be possible that sometimes fish is not present or

in very small amounts when the vessel is cruising; it may also be possible that the

fishermen are just not looking at the echosounders while they are going to a zone

where they presume they will find fish. Because of this incertitude in the usefulness

of the cruising information (i.e., in the third assumption), we attach a weight WC

to it. Here, we test three values for WS (0.3, 0.5 and 0.7) and three values for WC

(0, 0.5 and 1). Maps resulting from each combination of weight values are compared.

7.2.5 Spatial interpolation

Geostatistical interpolations are used for both the acoustic biomass and presence

proxy data. Geostatistics are recognized to be particularly suitable for describing

spatial distributions of marine populations (Ciannelli et al., 2008; Petitgas, 2001).

In general, they provide tools for capturing and modeling the spatial variability of a

given variable distributed in space or simultaneously in time and space (Chilès and

Delfiner, 2012). Kriging, the geostatical interpolation technique, requires the use of

a theoretical variogram model, which models the increase of variance between two

points, apart from each other at a distance h, when h increases. Several variogram

models exist in the literature (Chilès and Delfiner, 2012). Among them, the flexi-

ble Matérn model is recommended due to the inclusion of a smoothness parameter

that allows describing the spatial process at small lags (Marchant and Lark, 2007;

Pardo-Iguzquiza and Chica-Olmo, 2008). Exponential and Gaussian models are par-

ticular cases of the Matérn model. Here we use the Matérn model with geometrical

anisotropy (directional dependence) to account for lower (vs. greater) correlation

orthogonal (vs. parallel) to the coast. The parameters of the model are estimated
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using ordinary least squares. For exploring the spatial structure of the data and for

choosing the initial values of the parameters for the estimation, empirical variograms

are computed for both acoustic biomass and presence proxy, for each time-period.

Given the estimated variogram model, ordinary kriging is used for interpolat-

ing both the acoustic biomass and the presence proxy for a region encompassing

the anchovy habitat and the fishing zones (from 3°S to 19°S and from the coast-

line to 84°W) for grids of 2 km. The 2 km grids allow interpolation on a finer scale

than the 5 km grids for which P is computed. The gstat package (Pebesma, 2004) in

R (R Core Team, 2013) is used for fitting the Matérn model and for ordinary kriging.

7.2.6 VMS-derived and acoustic maps comparison

Because of the sampling methods and time-space resolution in both processes corre-

sponding to acoustic biomass and presence proxy, one can hardly expect direct map-

overlapping between them and classical linear correlation statistics appear poorly

relevant. We thus established a simple criterion for comparison: to evaluate if zones

with high fish biomass are associated with high presence proxy. Then, instead of

comparing all grid cells from each process, we compare two levels: the highest half

of both processes (grid cells taking values x, such that x > min +0.5× [max−min])

and the highest quarter of each process (grid cells taking values x, such that x >

min +0.25× [max−min]). Two indicators are used for assessing to what extent fish-

ermen spatial patterns reflect the spatial distribution of fish: distance to the coast

(DC) and occupied area (A). DC is defined as the center of gravity of the distance

to the coast (Joo et al., in review) of the cells. It represents the longitudinal extent

covered. A is defined as the number of cells associated with the level (highest half or

quarter) times 4, since each cell measures 2×2 km2. Both indicators are measure at

intervals of 1°of latitude. Then, Spearman correlation coefficients are computed for

each level and indicator, for evaluating the latitudinal co-variation of the indicators

for acoustic biomass and presence proxy.

We also assess at which scale the two processes, in general, co-variate. For that

purpose, we fit an empirical cross-variogram to the kriged cells from both maps. A

cross-variogram is an extension of the variogram for two variables, and measures, at

a distance h, to which extent the increase in one of the variables corresponds on av-

erage to an increase or decrease in the other one, when h increases (Rivoirard et al.,
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2000). For each time-period, empirical cross-variograms are computed over 500 sub-

sampling replicas, each one of 10000 cell grids (subsampling replicas are made due to

the high computational cost of computing an empirical cross-variogram accounting

for all kriged grid cells). Then, the median, first and third quantiles are computed.

7.3 Results

7.3.1 Exploring fishermen activity data

The maps of fishermen activities for the five-day periods show the spatial dynamics

of the anchovy fishery (Fig. 7.3, 7.4, and 7.5). For the three years, the dissimilarities

in the spatial distributions of the fishermen activities through the five-day periods

make that the composite maps result very different than the ones gathering data

from the whole periods. These findings support the decision for making a map of

presence proxy from the composite maps rather than from the whole-period maps

(Fig. 7.3h, 7.4f, 7.5g).

7.3.2 Spatial interpolation

The variograms of acoustic biomass show a similar range of ∼ 30 km for 2008 and

2009 time-periods (Fig. 7.6). For 2001, the variogram shows an increasing trend

(although it decays for a lag of ∼ 200 km). The ∼ 30 km structure is also found

when computing a directional variogram shore-to-offshore (orthogonal to the coast).

For the presence proxy, the spatial structure is strongly consistent over time. A first

spatial range of ∼ 30 km is found. For 2001 and 2008, larger structures also appear.

For both datasets, kriging is done for a region encompassing the anchovy habi-

tat and the fishing zones (from 3°S to 19°S and from the coastline to 84°W). From

the whole kriged region, we select a smaller region based on the kriging variance.

For acoustic biomass, the lowest variance is around the survey track (Fig. 7.7).

Therefore, a polygon around the track is selected. For presence proxy, the lowest

variances are around the cells associated with large amounts of VMS data, which

in some cases, are split into several aggregations. Thus, they cannot be naturally

contained in a single polygon. For that reason, instead of a polygon, a threshold on

the variance is used for selection (Fig. 7.8).
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7.3.3 Map comparison

For each year, we compare the acoustic biomass map with the ones issued from

different presence proxies (with the different combinations of WS and WC values;

Table 7.2). No significant positive correlations are found for 2008. For 2001, all WC

and WS combinations give significant correlations in area and DC between highest

halves of acoustic biomass and presence proxy values. For some cases with WC > 0

and WS > 0.3, correlation in A for the highest quarters is also significant. For 2009,

when WC = 0, significant correlations are found for DC, for both highest halves and

highest quarters. Significant correlations in DC for highest quarters are also found

for two other combinations of weights (WC = 0.5 with WS = 0.5, and WC = 1 with

WS = 0.7).

Since we seek to fix a set of parameters for all years, we choose WC = 0 (be-

cause significant correlations in DC are found with this value for 2001 and 2009)

and WS = 0.5 (because no difference is observed for WC = 0 and all different values

of WS). A summary of the results with the chosen parameters is shown in Figure

7.9. Through a visual comparison, overall and at coarse scales, dense foraging spots

correspond to medium and high densities of fish. However, some spots with high

fish density were not even visited by the fishermen. Conversely, some spots with

major fishing activity, were not detected by the acoustics as zones of high biomass.

Cross-covariograms (Fig. 7.10) evidence an overall positive co-variation between

acoustic biomass and presence proxy maps. For 2001 and 2009 a maximum peak of

covariation is achieved at ∼ 220 km, while for 2008 it was at ∼ 150 km (with a local

minimum at 300 km). For this latter year, cross covariance decreases more than in

the other two years after the peak is reached. The fact that the common structures

found in the variograms are not detected in the co-variograms show that acoustic

biomass and the presence proxy present structures of the same sizes but that do not

co-occur.
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Table 7.2: Spearman correlation coefficients for each indicator varying with lati-
tude for all combinations of WS and WC . Values in bold correspond to significant
correlations.

Year WC WS
Highest quarter Highest half
DC A DC A

2001 0 0.3 0.17 0.53 0.70 0.82

2001 0 0.5 0.17 0.53 0.70 0.82

2001 0 0.7 0.17 0.53 0.70 0.82

2001 0.5 0.3 0.23 0.45 0.71 0.81

2001 0.5 0.5 0.20 0.62 0.72 0.77

2001 0.5 0.7 0.22 0.63 0.74 0.72

2001 1 0.3 0.29 0.48 0.71 0.80

2001 1 0.5 0.30 0.57 0.74 0.77

2001 1 0.7 0.27 0.60 0.74 0.71

2008 0 0.3 −0.64 −0.09 −0.32 −0.50

2008 0 0.5 −0.64 −0.09 −0.32 −0.50

2008 0 0.7 −0.64 −0.09 −0.32 −0.50

2008 0.5 0.3 −0.11 -0.77 −0.32 −0.07

2008 0.5 0.5 −0.11 -0.77 −0.36 −0.14

2008 0.5 0.7 −0.11 −0.68 −0.29 −0.14

2008 1 0.3 −0.11 −0.65 −0.32 −0.07

2008 1 0.5 −0.11 −0.74 −0.36 0.00

2008 1 0.7 −0.11 −0.68 −0.36 0.00

2009 0 0.3 0.75 0.43 0.72 0.55

2009 0 0.5 0.75 0.44 0.72 0.55

2009 0 0.7 0.75 0.44 0.72 0.55

2009 0.5 0.3 0.65 0.26 0.55 0.23

2009 0.5 0.5 0.69 0.08 0.55 0.23

2009 0.5 0.7 0.60 −0.05 0.55 0.28

2009 1 0.3 0.65 0.26 0.55 0.30

2009 1 0.5 0.64 0.25 0.55 0.22

2009 1 0.7 0.69 0.10 0.55 0.27
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Figure 7.2: Synoptic sketch of the analyses. The elements for the final comparison
are in bold.
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(a) from 03/12 to 03/16 (b) from 03/17 to 03/21 (c) from 03/22 to 03/26

(d) from 03/27 to 03/31 (e) from 04/01 to 04/05 (f) from 04/06 to 04/10

(g) composite map from 03/12 to 04/10 (h) from 03/12 to 04/10

Figure 7.3: Fishermen activities from 2001 associated to VMS records at different
dates. For all maps, cruising records (blue dots) are plotted in the background,
searching records (yellow dots) in the middle ground and fishing records in the
foreground (red dots).
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(a) from 11/23 to 11/27 (b) from 11/28 to 12/02 (c) from 12/03 to 12/07

(d) from 12/08 to 12/12
(e) composite map from
11/23 to 12/12 (f) from 11/23 to 12/12

Figure 7.4: Fishermen activities from 2008 associated to VMS records at different
dates. For all maps, cruising records (blue dots) are plotted in the background,
searching records (yellow dots) in the middle ground and fishing records in the
foreground (red dots).
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(a) from 12/08 to 12/10 (b) from 12/11 to 12/15 (c) from 12/16 to 12/20

(d) from 12/21 to 12/25 (e) from 12/26 to 12/29

(f) composite map from 12/08 to 12/29 (g) from 12/08 to 12/29

Figure 7.5: Fishermen activities from 2009 associated to VMS records at different
dates. For all maps, cruising records (blue dots) are plotted in the background,
searching records (yellow dots) in the middle ground and fishing records in the
foreground (red dots).
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Figure 7.6: Variograms of acoustic biomass and of presence proxy for each time-
period. In each panel, the green line corresponds to the variogram of the 2001
period, the red line corresponds to the variogram of 2008, and the blue line, to
variogram of 2009.
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Figure 7.7: Krigged region for acoustic biomass (2001 example). (a) Kriged variance;
(b) variance for area under the polygon selected around the lowest variance values;
(c) kriged density for area under the polygon; and (d) kriged density divided in four
quarters based on their values (the cells in vintage red compose the highest quarter
and added to the cells in dark yellow, they compose the highest half).
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Figure 7.8: Krigged region for proxy of presence (2001 example). (a) Kriged relative
variance; (b) variance for values below the threshold (0.95); (c) kriged proxy for area
below the threshold; and (d) kriged proxy divided in four quarters based on their
values (the cells in vintage red compose the highest quarter and added to the cells
in dark yellow, they compose the highest half).



160
Chapter 7. Fishermen spatial behavior and fish acoustic biomass: two sides of the

same coin?

0
50

00
10

00
0

15
00

0
−

20

−
18

−
16

−
14

−
12

−
10−
8

−
6

r=
0.

82

0
10

00
20

00
30

00
40

00
−

14

−
13

−
12

−
11

−
10−
9

−
8

−
7

r=
−0

.5
0

0
50

10
0

−
14

−
13

−
12

−
11

−
10−
9

−
8

−
7

r=
−0

.3
2

0
10

00
20

00
30

00
−1

7

−1
6

−1
5

−1
4

−1
3

−1
2

−1
1

−1
0−9−8

r=
0.5

5

0
20

40
60

80
−1

7

−1
6

−1
5

−1
4

−1
3

−1
2

−1
1

−1
0−9−8

r=
0.7

2

0
50

10
0

15
0

−
20

−
18

−
16

−
14

−
12

−
10−
8

−
6

r=
0.

70

}0
3/

12
 -

 0
3/

16

}0
3/

17
 -

 0
3/

21
}

03
/2

2 
- 

03
/2

6
}0

3/
27

 -
 0

3/
31

}
04

/0
1 

- 
04

/0
5

}
04

/0
6 

- 
04

/1
0

20
01

}11
/2

3 
- 

11
/2

7

}11
/2

8 
- 

12
/0

2
}

12
/0

3 
- 

12
/0

7
}1

2/
08

 -
 1

2/
12

20
08

}1
2/

08
 -

 1
2/

10

}1
2/

11
 -

 1
2/

15

}1
2/

16
 -

 1
2/

20
}

12
/2

1 
- 

12
/2

5
}

12
/2

6 
- 

12
/2

9

20
09

8º
S

9º
S

10
ºS

11
ºS

12
ºS

13
ºS

14
ºS

15
ºS

16
ºS

17
ºS

18
ºS

1.
0

0.
7

0.
6

0.
4

0.
2

0.
1

0.
8

0.
5

0.
3

0.
0

80
ºW

78
ºW

76
ºW

74
ºW

72
ºW

0.
9

8º
S

9º
S

10
ºS

11
ºS

12
ºS

13
ºS

14
ºS

15
ºS

16
ºS

17
ºS

18
ºS

0.
75

0.
65

0.
55

0.
60

0.
70

0.
80

80
ºW

78
ºW

76
ºW

74
ºW

72
ºW

0
.7

0
.4

0
.2

0
.30
.6

0
.9

1
.0

7
ºS

8
ºS

9
ºS

1
0

ºS

11
ºS

1
2

ºS

1
3

ºS

1
4

ºS

8
0

ºW
7

8
ºW

0
.8

0
.5

0
.1 0
.0

0
.7

5

0
.6

5

0
.5

5

0
.6

0

0
.7

0

0
.8

0

7
ºS

8
ºS

9
ºS

1
0

ºS

11
ºS

1
2

ºS

1
3

ºS

1
4

ºS

8
0

ºW
7

8
ºW

0
.8

5

8
ºS

9
ºS

1
0

ºS

11
ºS

1
2

ºS

1
3

ºS

1
4

ºS

1
5

ºS

1
6

ºS

1
7

ºS

0
.8

0
.4

0
.1

0
.3

0
.6

0
.9

8
0

ºW
7

8
ºW

7
6

ºW
7

4
ºW

1
.0

0
.7

0
.5

0
.2 0
.0

8
ºS

9
ºS

1
0

ºS

11
ºS

1
2

ºS

1
3

ºS

1
4

ºS

1
5

ºS

1
6

ºS

1
7

ºS

0
.7

5

0
.6

5

0
.5

5

0
.6

0

0
.7

0

0
.8

0

8
0

ºW
7

8
ºW

7
6

ºW
7

4
ºW

O
cc

up
ie

d 
A

re
a

A
nc

ho
vy

 D
en

si
ty

P
re

se
nc

e 
P

ro
xy

D
is

ta
nc

e 
to

 th
e 

C
oa

st

F
ig

u
re

7.
9:

S
u
m

m
ar

y
of

re
su

lt
s

b
y

ye
ar

fo
r

th
e

ch
os

en
p
ar

am
et

er
s.

T
h
e

fi
rs

t
an

d
la

st
co

lu
m

n
co

m
p
ar

e
th

e
h
ig

h
es

t
h
al

f
of

ac
ou

st
ic

b
io

m
as

s
an

d
p
re

se
n
ce

p
ro

x
y

b
y

d
eg

re
e

of
la

ti
tu

d
e

in
o
cc

u
p
ie

d
ar

ea
an

d
d
is

ta
n
ce

to
th

e
co

as
t,

re
sp

ec
ti

ve
ly

.
T

h
e

co
rr

el
at

io
n

b
et

w
ee

n
b

ot
h
,

d
en

ot
ed

b
y

r,
is

al
so

sh
ow

n
.

In
ea

ch
of

th
os

e
p
lo

ts
,

th
e

b
lu

e
so

li
d

li
n
e

co
rr

es
p

on
d
s

to
p
re

se
n
ce

p
ro

x
y

an
d

th
e

re
d

so
li
d

li
n
e,

to
ac

ou
st

ic
b
io

m
as

s.
In

th
e

se
co

n
d

an
d

th
ir

d
co

lu
m

n
s,

th
e

k
ri

ge
d

m
ap

s
of

ac
ou

st
ic

b
io

m
as

s
an

d
p
re

se
n
ce

p
ro

x
y,

re
sp

ec
ti

ve
ly

,
ar

e
sh

ow
n
.

D
ot

te
d

li
n
es

in
d
ic

at
e

th
e

la
ti

tu
d
e

li
m

it
s

fo
r

ea
ch

5-
d
ay

p
er

io
d
.



7.4 Discussion 161

7.4 Discussion

In this study, we use VMS-based fishermen activity data to build maps of spatialized

proxy of anchovy presence. We use different combinations of weights for searching

and cruising activities and compare the maps with the ones obtained from acoustic

surveys. Even though the underlying assumptions of the IFD theory are generally vi-

olated, significant correlations between some spatial patterns – of high density zones

– are found. We show that, overall, (i) better associations are found when cruising

activities are not considered in the computation of the proxy; (ii) co-variation in

area and distance to the coast between acoustic biomass and presence proxy maps

varies through the time-periods studied; (iii) co-variation of the interpolated pres-

ence proxy and acoustic biomass is always positive and reaches its highest value at

a coarse scale for all time-periods; and (iv) acoustic biomass and presence proxy

presented structures of the same sizes (of tens of km) that did not co-occur.

7.4.1 Implications of the results

The optimal value for the WC parameter, 0, means that the cruising records, which

represents about 30% of the data, are not reliable and add ‘noise’ to the analysis, so

results are better when we discard the cruising records. A cruising activity means

that the fishermen did not see enough fish to reduce speed and search more carefully,

or start fishing. It does not always mean that there was no fish at that position, it

may rather indicate that they did not see anything because they were not watching.

In those cases, the cruising activity is not informative about the state of the fish

and introduces noise to the model.

Regarding the DC and A features, results were quite variable among years. For

2001, concerning occupied area, although latitudes with high presence proxy gener-

ally correspond to high acoustic biomass, both the presence proxy and the acoustic

biomass differed in their values; more specifically, the density is higher than the pres-

ence proxy (Fig. 7.9). By contrast, regarding DC, acoustic biomass and presence

proxy are significantly correlated and have similar values at each degree of latitude.

For 2008, no positive correlations are found for area neither for DC. However, nei-

ther of the maps (presence proxy vs. acoustic biomass) show systematically greater

area or DC than the other. For 2009, DCs are significantly correlated. By contrast,

areas have no significant correlation.
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Figure 7.10: Cross-variograms of acoustic biomass and presence proxy maps for each
time-period. 500 subsampling replicas are done. The red solid line represents the
median of the cross-variograms, while the blue dashed lines represent the first and
third quartiles. The x axis represents the distance in kms, and the y axis represents
the cross-variance function.
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Bertrand et al. (2008c) found significant correlations in monthly-averaged dis-

tance to the coast between fishing set locations and acoustic biomass for a small

region in Peruvian coastal waters (from 7°S to 10°S); and no significant correla-

tions were found for occupied area. Joo et al. (in review) analyzed the associations

between different features of anchovy (obtained from acoustic data) and fishermen

spatial behavior (obtained from VMS) at a two-three months time resolution, and

found a positive association between the center of gravity of the distance to the

coast of fish and the maximum distance to the coast in fishing trips. It was then

evidenced by both works that fishermen were highly sensitive to the longitudinal

extent of anchovy, at least at coarse scales. Here, the center of gravity of the dis-

tance to the coast of fishermen and fish are computed at each degree of latitude for

a one-month period. We thus show that, for two of the analyzed periods, fishermen

are sensitive to the longitudinal extent of anchovy at a fine spatial scale and could be

potentially considered as indicators of the longitudinal extent of anchovy. Bertrand

et al. (2008c) postulated that the reason why there were no significant correlations

in occupied area was that an indicator of occupied area is more sensitive to mis-

matches in spatial occupation between fishermen and acoustic biomass than a mean

(or center of gravity, in our case) of distance to the coast.

Cross-variograms evidenced spatial co-variation of presence proxy and acoustic

biomass at different scales, with peaks at: ∼ 220km for 2001, ∼ 150km for 2008, and

two peaks, ∼ 100km and ∼ 220km for 2009. A more detailed analysis on the scales

of co-variation could be done using cross-wavelets (Torrence and Compo, 1998), a

data analysis technique that would allow detecting the spatial zones of co-variation

at different lags (comparable to the ‘h’ of cross-variograms).

Although spatial covariation was found at coarse scales, both processes did not

seem to co-occur. It may suggest that the dynamics of fishermen and acoustics, and

more importantly, the dynamics of fishermen and anchovy may be influenced by

factors operating at different scales (Hengeveld, 1987, we will describe acoustics and

fishermen dynamics in the following section). Besides, the lack of perfect spatial

synchrony may actually explain the sustainability of anchovy. If fishermen knew

exactly where to fish and they distributed in space exactly like the fish, the spatial

co-occurrence would indicate an eventual – or proximate – collapse of the fish stock.

The fact that fishermen exploit only some of the fish patches, and that they do not

necessarily target the biggest anchovy patches, but settle with patches large enough

for fulfilling their holding capacity, contributes to sustainability.
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7.4.2 Two datasets of different nature

Acoustic data dynamics

Anchovy density maps are based on acoustic survey data. Acoustic biomass informa-

tion is usually assumed to provide a snapshot of fish distribution valid for the time

of the survey . Nevertheless, the systematic survey design makes that, in practice,

the northern transects may be about a month away from the southern transects.

Since fish schools are known to move up to ∼ 26 km/day (Peraltilla and Bertrand,

2013), depending on the scale of the analyzed patterns, what happened at the north

may not be valid anymore for the days when the survey vessel is at the south.

VMS data dynamics

The maps of fishermen activities show strong variabilities in the spatial distribution

of activities for consecutive five-day periods (Fig. 7.3, 7.4, 7.5). These differences

are due to dynamics at fine (e.g., hours) and coarse temporal and spatial scales (e.g.,

days and weeks within a fishing season; fishing zones). In a previous work on fish-

ing dynamics, Passuni (unpublished) analyzed fishing set positions extracted from

VMS data on the same anchovy fishery (inferred using artificial neural networks;

Joo et al., 2011). She estimated bivariant kernel densities of the fishing set positions

(Botev et al., 2010), detected regions with high densities and grouped them into

clusters (Haralick and Shapiro, 1992; Klusch et al., 2003). She used this method

for the identification of clusters of fishing sets at several time scales (6, 12 and 24

hours) and found that only at a six-hour scale it was possible to track the movement

of those clusters (Fig. 7.11). By contrast, at 12 and 24 hours, identified clusters

were very large (∼ 100km) and their movement was not easy to track visually in

consecutive images. The high daily dynamics of the fishery in a small zone off Peru

are also shown in Bertrand et al. (2012).

At coarser temporal and spatial scales, several factors contribute to variations in

fishermen spatial behavior throughout a fishing season. Fishermen could have more

uncertainty on the localization of the anchovy aggregations at the beginning of a

season, than at the middle or the end. It could be appealing to analyze the differ-

ences in their spatial behavior throughout a whole fishing season. Fishing activities

dynamism does not only varies at different time scales. It may also differ from one

region to another; for instance, fishing activities may be more concentrated near the
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Figure 7.11: Clusters of fishing sets identified by kernels of density. Evolution of
clusters are shown when separated by six hours (a) and (b), and when separated by
a day (c) and (d).

most important ports. Other factors, like local closures of the fishery (e.g. after

exceeding a catch limit of juveniles), or companies strategies (e.g. moving their fleet

to a certain region where there are a priori good fishing spots or proximity to an

available factory), also affect the activities distribution both in time and space.
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From presence proxy to biomass proxy: not so straightforward

We have pointed out the intrinsic and extrinsic conditions than may introduce ‘noise’

(variability) in each dataset, which hinders the comparison between both maps.

Another difficulty lies on the fact that the presence proxy is not compared to an

‘actual’ probability of anchovy presence, but to a scaled acoustic biomass. Actu-

ally, the interest behind the construction of a spatialized presence proxy is to use it

for computing an index of biomass or abundance (Walker et al., submitted). One

could question why did we not build a proxy of biomass instead of a proxy of prob-

ability of presence. Building a proxy of biomass from fishermen activities may not

be as straightforward as the probability of presence. There are no self-evident as-

sumptions to make for the former. Based on the IFD theory, it was assumed that

foraging effort, would distribute in space proportionally to the available resource.

Foraging effort in space was represented here by weighted frequencies of activities

by unit of space, defining an index called presence proxy. In turn, the available

resource was represented by scaled log-transformed acoustic biomass. If indeed the

available resource was well-represented by the acoustic biomass and the IFD-based

assumption was met, it would be conceivable to use the presence proxy for extrap-

olating a biomass proxy. However, the assumption does not seem to hold. A key

issue could lie in the fact that the availability of prey is not always proportional to

its attractiveness for fishermen. This is important since the decision for fishing is

based on how attractive an aggregation is considered. How concentrated, superficial

and closed to port should a patch be and how high should its biomass be for it to

be considered attractive, is a subjective question. Its answer could differ from one

fishermen to another and depend on several other factors (e.g. the number of com-

petitors interested in the patch, the local and global environmental conditions, their

previous fishing success since the fishing season opened, and their previous success

since the fishing trip started or how full is the vessel’s hold). These relationships

should be carefully explored before a proxy of biomass could be built.

7.4.3 Future work (for improving map comparison and match-

ing)

Several issues could be worth exploring for improving map matching.

Developing a methodology for comparing maps. In this work, we built some in-

dicators for comparing overall consistency between maps. Although this may be a
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bit too ‘hand-made’ (for comparing high densities zones, highest-half and highest-

quarter cell-grids from both maps were compared in terms of occupied area and cen-

ter of gravity of distance to the coast), there are no standard methods for comparing

map consistency (not grid cell by grid cell), like what was needed here. Methods for

comparing maps by several criteria should be developed.

Preferential sampling. Pennino (2013) used preferential sampling geostatistical

modeling (Diggle et al., 2010), for estimating the distribution of European hake

(Merluccius merluccius) abundance, using data from on-board observers deployed

on board of fishing vessels in the Gulf of Alicante. It would be appealing to ap-

ply the preferential geostatistical modeling approach into the presence proxy model,

and compare those results to both the classic geostatistical modeling of fishermen

behavior and acoustic biomass results obtained here.

No searching. Concerning the weight parameters, the performance of the proxy

interpolation show only small variations when changing the weights of searching

activities. Since the inference of the searching activity was the least reliable (Joo

et al., 2013), using only the proportion of fishing activities at each cell grid for com-

puting the presence proxy could be tested; i.e. considering searching and fishing

weights equal to 0 and 1, respectively. However, we hypothesize that it will not

cause fundamental improvements, since a 0.3 searching weight did not either.

Cruising at night. Here we assumed that a cruising activity indicate absence of

anchovy, for all cruising activities excepting the last cruising segment of each trip,

considering that in those cases, the fishermen have a priori decided to head back to

port regardless of how much fish there is on the way. Since foraging (represented

by searching and fishing activities) is mostly done during daytime (Fig. 7.12), we

could also consider discarding the cruising activities occurring at night, as they are

not based on fish presence/absence. The cruising records at night may be the ones

causing the noise that we found in the data.

Bayesian non-informative priors. Fishermen behavior is shaped by the ecolog-

ical, economical and management conditions (Joo et al., in review). The different

results obtained here for each year may be partly explained by that. Then, instead

of fixing the values of the searching and cruising weights, we could model them using

priors (Carlin and Louis, 2000; Congdon, 2006) that could cope with that variability.
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Figure 7.12: Distribution of activities during a day. The blue, red and yellow solid
lines correspond to cruising, fishing and searching, respectively.

Fish schools depth. We tacitly assumed that fish depth does not constrain fish-

ermen decisions. In practice, purse-seiners take into consideration the school depth

in relation to the net size before deciding to fish. A threshold on fish school depth

(∼ 40m is the averaged maximum depth of fished schools registered by on-board

observers) could be applied to the acoustic biomass dataset before spatial inter-

polation. In that case, we would assess how the spatial distribution of fishermen

activities could be used as a proxy of the spatial distribution of shallow anchovy.

If no information on fish school depth is available, oxycline depth (extracted from

acoustic surveys; Bertrand et al., 2010) could be used as a proxy.

Physical covariates. Previous works have shown a strong relationship between

environmental variables (such as water masses distribution or

Chlorophyll-a) and anchovy spatial distribution and biomass (Gutiérrez et al., 2007;

Joo et al., in review; Swartzman et al., 2008). Those variables could be used as

spatial covariates for improving biomass interpolation, instead on relying only in

the acoustic data collected through the transects (Georgakarakos and Kitsiou, 2008,

obtained better results when using covariates for mapping abundance distribution

of small pelagic species).

Indicators at fish aggregation level. It would be attractive to evaluate if clusters

of high presence proxy correspond to fish patches (i.e., comparing ‘fish clusters’ iden-

tified by both methods). Using kernel densities (Botev et al., 2010), for instance, as

in Passuni (unpublished), clusters could be identified in both maps and the propor-

tion of identified clusters could be used as an indicator of cluster recognition.
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7.4.4 Synthesis

The use of spatialized data on fishermen behavior for producing maps of levels of fish

presence or, even better, maps of a proxy of biomass, is highly appealing. However,

the analyses from this work have shown that the maps of acoustic biomass and pres-

ence proxy produced did not strongly match. Nonetheless, an indicator of fishermen

spatial distribution, distance to the coast, has proven to be a robust indicator of

the longitudinal extent of anchovy. Besides, we found positive covariations between

both maps at larger scales than the ones used for interpolation: between ∼ 150 km

and ∼ 220 km. The potential of cross-wavelets analysis for simultaneously studying

the space and scale of co-variations seems highly appealing. Several other issues

have been discussed for improving the quality of the results and will be addressed

in future works.
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Chapter 8

General Conclusions and

Perspectives

“It is not the facts that are of chief importance, but the light thrown upon them,

the meaning in which they are dressed, the conclusions which are drawn from them,

and the judgments delivered upon them.”

– Mark Twain (variant of quote from Amended Obituaries, by Boyd et al. (2004))

In this work, we aimed at providing a first approach to fishermen behavioral ecol-

ogy at multiple time and spatial scales (Fig. 8.1). We characterized the behavior

of Peruvian anchovy fishermen by means of their trajectories and, for that reason,

we began this manuscript by presenting a movement ecology framework (Chapter

2) and a broad outline on the Northern Humboldt Current System (Chapter 3).

As stated in Chapter 2, a movement path results from the succession of dis-

tinct behavioral modes. In Chapter 4, we analyzed the behavioral modes within

the fishing trips. We compared several discriminative and Markovian models for

inferring behavioral modes associated with fishermen trajectories, for a subset of

∼ 300 fishing tracks for which behavioral modes were known. They represented

∼ 1% of the total number of tracks from the fishing fleet in 2008. The better

performance of Markovian models over the discriminative models highlighted the

importance of modeling state dynamics for accurately inferring the behavioral mode

sequences. Semi-Markov processes represent better the behavioral mode sequences

than first-order Markov processes, since they explicitly model state duration and

consider transitions at a segment scale (i.e. a sequence of consecutive steps associ-

ated with a same behavioral mode). Through a simulation experiment, it was shown

that increasing time resolution (to at least 1 record each 30 minutes) significantly

171
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increased the accuracy of Hidden Semi-Markov Model (HSMM) inference. We thus

used HSMMs for inferring the behavioral modes on the tracks where the modes re-

mained unknown, not only for 2008, but for the whole 2000-2009 period.

Then, we analyzed the behavioral patterns among fishing trips (Chapter 5). We

characterized each fishing trip by a set of features; some of them based on the in-

ference made in the previous chapter, such as time spent fishing or cruising. We

used hierarchical clustering for analyzing how fishing trip patterns grouped. Four

groups were found, associated with management zones (north-center and south),

fleet segments (steel and wooden fleet) and skippers’ personality (risk takers vs.

risk adverse).

Next, we analyzed the adaptive behavior of fishermen to its ecological context at

the scale of a fishing season (Chapter 6). We found significant associations between

fishermen, anchovy and environment dynamics, and characterized the fishermen

response to the observed ecosystem scenarios. Moreover, we found evidence that

environmental fluctuations smooth out along trophic levels up to fishermen.

Finally, we analyzed the spatial patterns of behavioral mode positions of fisher-

men and compared them with acoustic biomass of anchovy (Chapter 7). Investigat-

ing if fishermen spatial behavior reflected anchovy spatial distribution, we built a

proxy of anchovy presence using the geo-referenced behavioral modes and compared

its spatial patterns to those of the acoustic biomass. Positive spatial co-variations

between the presence proxy and the acoustic biomass were found at coarse scales.

In addition, we found significant correlations in distance to the coast for two out

of three fishing seasons studied. However, the maps of presence proxy did not ac-

curately reflect the maps of acoustic biomass at a small scale. Both sources of

information seem to complement each other; the maps of presence proxy could be

rather used as maps of spatialized effort and/or maps of the anchovy seen by the

fishermen. Potential improvements in the applied methods (proposed in section

7.4.3) could provide stronger coherence between the maps.

As stated in Chapter 2, the most common use of fishermen trajectory data is

the identification of fishing set positions; the classification method employed often

considers each positioning record as independent of all the others (e.g. a threshold

on speed). Under such approach, one chooses to forget that those positions come

from a trajectory, and as such, have a sequential nature. Neglecting the temporal
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dimension of a trajectory is – to put it in other words – like taking the verses in

a poem and re-writing them in one plain sentence: it is not poetry anymore. In

this work, we considered the spatio-temporal nature of the trajectories when using

hidden semi-Markov models for modeling the behavioral modes within the fishing

trips. Despite the global accuracy is not overwhelmingly superior when compared

to discriminative models, we proved that this kind of model represents better the

sequences of behavior and their duration. As rhythm gives sound to a poem, be-

havioral mode sequences enrich our understanding of fishermen behavior, greatly

contributing to the characterization of the fishing trips in Chapter 5, the response

of fishermen to ecosystem scenarios in Chapter 6 and the elaboration of a map of

anchovy presence according to what fishermen ‘saw’ in Chapter 7.

Each analysis was done at a different scale: the fishing trip scale, a fishing season

scale, and a broader scale of spatialized behavioral patterns off Peru. The challenge

was to understand the patters observed at each scale and their drivers. When study-

ing behavior at the fishing trip scale, fleet segment and management factors showed

to be key for discriminating the trips into different groups. No information on the

biotic or abiotic conditions were available at very fine scale (e.g. fish biomass at

each VMS record) for testing for environmental and biological factors conditioning

fishermen behavior at that scale. Those data were available and analyzed at the

fishing-season-like scale (∼ 2-3 months), and the response of fishermen to anchovy

and environment conditions was significant. This result contrasts with the compar-

ison between the acoustic biomass and the anchovy presence proxy (computed from

behavioral mode positions) at a ∼ 30 days scale. Although spatial covariation was

found (at coarse scales), they did not seem to co-occur.

These apparently odd results may be the confirmation that, just like other pat-

terns in ecology (Halley et al., 2004), fishermen behavioral patterns are not scale

invariant. It may suggest, thus, that in average, fishermen behavior does strongly

respond to global changes in anchovy biomass, but, when it comes to spatial co-

occurrence (with acoustic biomass), their dynamics may be influenced by factors

operating at different scales (Hengeveld, 1987). The predating power of fishermen

and their average trip duration (∼ 24 hours, wherein they aim at filling their hold-

ing capacity) might make them more dynamic than anchovy; and certainly more

dynamic than acoustic surveys. Besides, the fact that the zones with the high-

est fishing effort do not always correspond with the ones with the highest acoustic

biomass may not be as strange as it seems. As stated by Hastings (2010), lack of
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spatial synchrony may be the ultimate explanation for persistence of strongly in-

teracting exploiter and ‘victim’ systems. Indeed, if fishermen knew exactly where

to fish and they distributed in space exactly like the fish, the spatial co-occurrence

would indicate an eventual – or proximate – collapse of the fish stock. The fact

that fishermen exploit only some of the fish patches, and that they do not neces-

sarily choose the biggest anchovy patches, but settle with patches large enough for

fulfilling their holding capacity, contributes to sustainability. This could represent

another piece in the puzzle of the anchovy paradox and the maintenance of the high

productivity in the NHCS.

From a methodological point of view, the low co-occurrence between fishermen

behavioral patterns and acoustic biomass may be partly conditioned by the differ-

ences in sampling method and interests: fishermen vs. scientists. Therefore, we

could regard fishermen effort as another – preferential – sampling method. Pennino

(2013) used preferential sampling geostatistical modeling (Diggle et al., 2010), for

estimating the distribution of European hake (Merluccius merluccius) abundance,

using data from observers deployed on board fishing vessels in the Gulf of Alicante.

It would be appealing to apply the preferential geostatistical modeling approach in

future works, and compare those results to both the classic geostatistical modeling

of fishermen behavior and acoustic biomass results obtained here.

The analyses made in this work provide a better understanding of fishermen

behavior and their drivers at different scales. In Figure 8.3, a Stommel diagram of

fishermen behavior is presented. We show the behavioral units studied (behavioral

mode, fishing trip, fishing season), the factors proven to condition behavior at each

scale (black arrow), and the fish and environment structures corresponding to the

studied scales. Through this work, we showed that, at the scale of a behavioral mode,

it is the internal states that accounts mostly for inferring behavioral modes. This

internal state manifested itself through the observed track (i.e. speeds and turning

angles) and the behavioral sequences (e.g. the behavior in the previous segment

in the sequence conditioned the behavior in the next segment). Those components

allowed obtaining 80% of accuracy when inferring behavioral modes through hidden

semi-Markov models. At the fishing trip scale, the main drivers were management

rules (north-center and south regions), fleet segments (steel vs. wooden) and skip-

pers personality (risk takers vs. followers). The explained variance by the clusters

denoting these drivers was 61%. At the fishing season, anchovy biomass and distri-

bution, and environmental factors such as sea surface temperature, Chlorophyll-a



176 Chapter 8. General Conclusions and Perspectives

and oxycline depth significantly conditioned fishermen spatial behavior (0.63 and

0.55 of association between fishermen and fish, and fishermen and environment, re-

spectively). Evidently these results are opportunistic, because they dependent on

the available data at each scale. In spite of this, the levels of explained variance are

high enough to ensure that the enlightened processes are the most important ones.

Concerning behavioral modes, for example, fishing schools could play a role in the

decision on whether to fish or continue searching. As shown in this work, fishermen

preferred to forage (search and fish) at daytime. This is probably because at day, fish

are aggregated in schools, most likely as a response to predation (Gerlotto et al.,

2006); while at night, the vertical upward migration of zooplankton and reduced

predation on anchovy create a more suitable habitat, where anchovy is distributed

as loose shoals and scattered fish (Bertrand et al., 2008a, Fig. 8.2). Bertrand et al.

(2008a) showed that internal waves play an important role in the distribution of fish

at very small scales (from meters to kilometers, Fig. 8.3), basically in two ways.

First, internal waves create convergences that concentrate prey above the oxycline,

which is particularly important during the day when most zooplankton is otherwise

distributed below the oxycline. Second, they increase the available habitat by deep-

ening the oxycline, allowing anchovy to form larger and more elongated schools.

Fishermen could find these large schools attractive enough for triggering a fishing

operation. If not, they may expect a set of consecutive large schools, which respond

to submesoscale structures: cluster size depends on submesoscale physical features

(e.g., upwelling plumes, eddies) that shape the distribution of zooplankton patches

(Bertrand et al., 2008a). We hypothesize that eventual data on internal waves and

submesoscale processes (e.g., using echosounder records of fishing vessels, or acoustic

Doppler current profilers and vertical temperature observations as in Nakada et al.,

2013) could improve the inference of behavioral modes and thus our representation

of the behavioral dynamics at that scale, particularly for discriminating between

fishing and searching behavior. Still, it is up to the fishermen to decide whether

the school is ‘attractive enough’ for fishing it; criteria for ‘attractiveness’ may not

be the same for every skipper; as stated by Gaertner et al. (1999), the cause of any

particular skipper decision can be multiple and conjectural.

Regarding a fishing trip (as a behavioral unit), in a context where fishing trips

last ∼ 24 hours, the trip descriptors describing where to go and how much time

to stay in each zone and how much time to spend in each behavioral mode, could

be conditioned to knowledge or discovery of zones of large anchovy clusters. In a
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Figure 8.2: Synthetic representation of the 3D spatial distribution of anchovy, adapted
from the ‘habitat-based basin model framework’ of MacCall (1990). The depth of the
basin increases with habitat quality in terms of oceanographic and biotic features. The
larger basin corresponds to the zone of anchovy distribution. Habitat quality increases
in areas rich in prey surrounding an upwelling zone for example. Inside the rich areas,
submesoscale structures and internal waves concentrate prey, further increasing habitat
quality. During the day, the depth of the basin is shallower than during the night since
prey are less accessible (some of the plankton have migrated below the oxycline) and
predation by visual top predators is higher. Anchovy form dense schools. During the
night (lower figure) the depth of the basin increases as prey become more available and
predation is reduced. Fish are no longer able to construct schools but are concentrated
in prey patches or internal waves, when present. Encapsulated figures above the basin
figures show anchovy distribution as evaluated during an acoustic survey performed just
after the experiment illustrating the range of distribution of anchovy off Peru (left) and an
upwelling area (right). Encapsulated figures below the basin figures show typical examples
of fish collective structure in each case as observed with the multibeam sonar or with the
echosounder. Source: Bertrand et al. (2008a)
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fishing trip, the goal basically consists in filling the holding capacity of the vessel in

∼ 24 hours and spending as less fuel as possible. Fishermen need to develop tactics

for achieving that goal. In the southern region, the platform is very close to the

coast, which makes anchovy distribute near the coast, conditioning the geometry

and proximity to coast of fishermen trips. In general, in north-center and south

regions, fishing trips are not too far from the coast, since anchovy can be found not

too far away in its cold coastal water habitat (Swartzman et al., 2008). Among the

vessels, the wooden fleet is more sensitive to getting further away, because they need

to catch less and have typically worse refrigeration system than industrial vessels.

Among both fleet segments, most fishermen showed a Cartesian behavior, i.e. a way

of decision making where fishermen only go to locations where present information

tells them that the ‘highest returns’ can be found (Allen and McGlade, 1986). And

the few risk takers, or stochasts, are willing to explore new zones for identifying

large aggregations of prey. Risk takers are mostly from the steel fleet; those are

bigger vessels with typically better refrigeration systems. Fish biomass and distri-

bution could have an impact on fishing trips, but when considering what triggers

each fishing trip, it seems that the vessel and fishermen characteristics, as well as

the division between management zones, are the most important factors.

At the fishing season, anchovy and environmental conditions were computed. At

this scale, fishing season showed to be conditioned by anchovy and environmental

factors. In turn, fish stocks are determined by mesoscale physical features increasing

and concentrating productivity in the upwelling cells. Because the analyzed fish-

ing seasons did not encompass any El Niño event, the seasonal dynamics were the

strongest environmental dynamics shaping fishermen spatial behavior. Summer sea-

sons, associated with higher productivity, more superficial oxycline and cold coastal

waters close to the coast, favor abundant, locally-concentrated anchovy biomass

(Gutiérrez et al., 2007; Swartzman et al., 2008) and closer to the coast. These con-

ditions make anchovy more easily available and average effort for fishing is reduced

(trips are shorter, closer to the coast and more time of the trip is spent fishing).

Conversely, winter and spring seasons, characterized by lower sea surface tempera-

ture and productivity, and a deeper oxycline, are associated to lower local and global

biomass. As a result, fishermen have to go farther to fish, fishing trips last longer

and more time is spent cruising.

For a larger time-series, – for which on-board observers data were used for charac-

terizing fishermen behavior at the season scale since 1996 – Bertrand et al. (2008b)
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analyzed how large scale oceanic forcing, via Kelvin waves, affected the coastal

ecosystem. Downwelling Kelvin waves, associated with warm (El Niño) scenarios,

were characterized by an increase in sea surface temperature and a smaller extent

of cold coastal water masses, making anchovy to be closer to the coast and deeper,

following the deepening of the oxycline. Because of the high patchiness of anchovy,

fishermen movement is more diffusive (i.e., there are a lot more short moves than

long moves, as explained in section 2.4), trips are shorter and closer to the coast;

and because anchovy is deeper, it is less accessible and less catches are made. Con-

versely, upwelling Kelvin waves, associated with normal and La Niña conditions,

were characterized by lower temperatures and a larger extent of cold coastal waters,

providing anchovy with a larger habitat. Anchovy is thus distributed in larger areas

and less patchy than in El Niño conditions, but also more superficial. Fishermen

movement is then less diffusive, as they need to explore larger areas, fishing trips

last longer and more catches are made.

Hence, the analyses made in this work and previous works can give a rich picture

of the multiscale fishermen behavior.

Still, many other components could enrich this analysis. First, behavioral pat-

tern dynamics throughout a fishing season seem appealing to study. Two contrasting

hypothesis could be tested: (1) in the first days of the season, vessels will start close

to the coast, with similar durations and distances traveled, but because they do not

know the fishing grounds, they will present more sinuous paths and high variance

in the time spent at each behavioral mode; (2) due to fishing ground prospection

and fixed tactics by fishing companies at the beginning of the season, fishermen will

have decided where to fish in advance, so their paths will be more ballistic, although,

as in the first hypothesis, the variance in time spent in behavioral modes will be

high because a priori fixed strategies will work for only some of them; also they will

remain near the coast in the first days and move away progressively.

Other aspects could be studied as well. Future works should include the social

(collective behavior) and economical conditions (e.g. oil price, fishmeal price, and

environmental repercussions through life cycle assessment) that also shape fisher-

men behavior. Another factor is the quota system. In 2009, an individual vessel

quota (IVQ) system was introduced in the Peruvian anchovy fishery. Interviews

with fishermen and fishing company managers suggest that fishermen collective be-

havior changed drastically after the IVQ system started: the race for fish ended
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and so the competition turned into association. Due to the observed dynamism of

the fishery, we propose that the competition/association be analyzed at the scale of

the trajectory rather than at each VMS record, in order to take into account the

spatio-temporal interactions between tracks. Individual-based models (Reynolds,

1987) or other models used in animal collective behavior (Sumpter et al., 2012)

could be explored; interactions between individuals could differ based on the main

drivers found in this work for several scales (Fig. 8.3). With the increasing avail-

ability of data from the monitoring of ecosystems, the framework presented here can

be used for analyzing fishermen behavioral ecology in other fisheries and ecosystems.

In order to improve the accuracy of the analyses and thus the fisheries man-

agement, we stress some important recommendations. First, there is a need for

increasing the frequency of the VMS records. We have shown via simulation that

higher frequencies (than 1 record per hour) can increase the accuracy of the be-

havioral mode inference, especially for modes that can last shorter than the time

between consecutive emissions (the searching mode in our case). Time steps of 30

minutes or even better, 15 minutes, could greatly increase the inference performance

and so the accuracy of the subsequent analyses. It would also open the opportu-

nity of using many other models, like spatio-temporal models, or wavelet analyses,

which would provide new insights into fishermen behavior. Another important is-

sue is to take advantage of complementary sources of fishermen monitoring. In this

work, the on-board observers data has been essential for calibrating and then val-

idating the models for inferring the modes. Although recognizing the great effort

of IMARPE (Instituto del Mar del Perú) for maintaining their on-board observers

program, which allowed obtaining > 200 fishing trips with concomitant VMS and

observers data per year, an increase in the number of observed fishing trips would

increase the generalization power of the models and thus, their validation perfor-

mance. Because each database had a distinct vessel ID system, the name of the

vessel was used for relating the databases; names were sometimes misspelled and

in some cases, vessels were renamed, causing problems for relating the databases

and probable loss of information during the process. For that reason, we strongly

advise that a unique vessel ID system be used in all databases, so that relating the

databases be more efficient. In regions where on-board observers programs are not

implemented, logbook data can be used for training the models, although it should

be considered that they are not independent samples (from the vessel crew).
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The indicators of fishermen behavior computed here (e.g. time spent in each

behavioral mode, maximum distance to the coast, sigma, k) showed to be sensitive

to ecosystem and management conditions. Therefore, we recommend their use as

effort indicators, additionally to the CPUE indicators commonly used. In addition,

the availability of the spatial distribution of behavioral modes, and particularly,

the maps of presence proxy can be used as maps of fishing effort. Another rec-

ommendation for ecosystem-based management, is the incorporation of seabirds in

fisheries management, as mentioned in section 2.7.5. Despite not accounting for

the interaction between vessels, seabirds and marine mammals in the present work,

high-resolution tracking data is being collected on samples of seabirds and fur seals

in reproduction zones during breeding seasons. A first study on competition for

prey between seabirds and vessels was published (Bertrand et al., 2012), and more

work is in progress. This first work has shown that the competition of fishing ves-

sels affects seabirds foraging behavior, probably causing local depletion and making

them go farther in the search for prey. The interactions of fishermen and competitor

predators should be monitored and managed in order to guarantee the sustainability

of those predators populations.

From a methodological perspective, we would like to emphasize the importance

of model validation. Indeed, the increasing access to Vessel Monitoring System data

is opening wide opportunities for monitoring and modeling. As we have shown here,

and have also shown Bertrand et al. (2008c); Joo et al. (2011); Palmer (2008); Walker

and Bez (2010) is that the evaluation of model performances (e.g. for identifying

fishing sets or behavioral modes in general) should not be disregarded. Especially

for management purposes, it should be critical to measure the accuracy and pre-

cision of our estimates, instead of blindly trusting our results. Referring to the

lack of validation, Jerome Sacks said that in this era of methodological advances,

‘uncertainty is as uncertain as ever’ (Sacks and Ylvisaker, 2012). Objective model

validation implies (1) having an independent groundtruthed dataset to evaluated

the model, and (2) a priori defining criteria for evaluating a model, i.e. indicators

of performance that depend on how we define that results are good. Performance

indicators under those criteria will help respecting the parsimony principle or Oc-

cam’s razor, by choosing a simple model until its simplicity can be traded for greater

explanatory power (i.e. better performance). Indeed, model validation can be useful

in two ways: On the one hand, it saves us from the risk of using a very simple and

practical model but that may give very inaccurate results; in this case, validation

would tell us to look for a more complex model that fits better the data. On the
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other hand, it saves us from the growing tendency to look for a more complex (i.e.

more parametrized) model that can better represent reality as we think it is or as

our data used for calibration tell us it is. In this case, validation would tell us that

the computational prize we are paying for a complex model is not worth it and we

should stop at a more parsimonious model.

Regarding complex models, end-to-end models combine physicochemical oceano-

graphic descriptors and organisms ranging from microbes to top predators (Rose

et al., 2010). The demand for such approaches arises from the need for quantitative

tools for ecosystem-based management, for accounting for multiple changes in the

ecosystem, including climate change and fisheries management policies. However,

in those models, fishermen are not modeled as a component of the ecosystem that

is conditioned by it; catches only vary due to management restrictions (when it

does); we have proven that it is not accurate. Both the inclusion of humans and of

organisms’ behavioral movement had been recognized as important issues for fur-

ther development of end-to-end models (Rose et al., 2010). The complementary

indicators of fishing effort and behavior presented here, could be incorporated to

those models to take into account the variability in fishermen behavior; and the

explored relations with the environment and anchovy could give a starting point for

determining the relationships between fishermen and the ecosystem in those models.



184 Chapter 8. General Conclusions and Perspectives



Bibliography

Aguilar Ibarra, A., C. Reid, and A. Thorpe, 2000. The political economy of marine

fisheries development in Peru, Chile and Mexico. Journal of Latin American

Studies 32:503–527. 61

Akaike, H., 1981. Likelihood of a model and information criteria. Journal of Econo-

metrics 16:3–14. 79
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Allen, P. M. and J. M. McGlade, 1986. Dynamics of discovery and exploitation: the

case of the Scotian Shelf Groundfish fisheries. Canadian Journal of Fisheries and

Aquatic Sciences 43:1187–1200. xlv, 98, 108, 178

Aranda, M., 2009. Developments on fisheries management in Peru: The new individ-

ual vessel quota system for the anchoveta fishery. Fisheries Research 96:308–312.

xxix, 60, 61, 63, 65, 67, 98, 144
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Chavez, F. P. and M. Messié, 2009. A comparison of Eastern Boundary Upwelling

Ecosystems. Progress in Oceanography 83:80–96. xxviii, 43, 44, 45, 51

Chavez, F. P., J. Ryan, S. E. Lluch-Cota, and M. Niquen C, 2003. From anchovies

to sardines and back: multidecadal change in the Pacific Ocean. Science 299:217–

221. 57, 60

Chelton, D., editor, 2001. Report of the high-resolution ocean topography science

working group meeting. Oregon State University, College of Oceanic and Atmo-

spheric Sciences. xxvii, xxxv, xlviii, 180

Chessel, D. and M. Hanafi, 1996. Analyses de la co-inertie de K nuages de points.

Revue de Statistique Appliquee XLIV:35–60. xliv, 123

Chilès, J.-P. and P. Delfiner, 2012. Geostatistics: modeling spatial uncertainty. John

Wiley & Sons, Inc. xliv, 149

Ciannelli, L., P. Fauchald, K. S. Chan, V. N. Agostini, and G. E. Dingsør, 2008.

Spatial fisheries ecology: Recent progress and future prospects. Journal of Marine

Systems 71:223–236. 149

CIDEF, 2002. Proceso de privatización de Pesca Perú 1992-2001. Technical report,
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noloǵıa, Lima, Perú. 53
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patterns of marine predators. Nature 465:1066–1069. 13, 14, 23

Husson, F., J. Josse, S. Le, and J. Mazet, 2013. FactoMineR: multivariate ex-

ploratory data analysis and data mining with R. R package version 1.25. 102,

123



BIBLIOGRAPHY 203
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Appendix A

Pre-processing of vessel

monitoring system and on-board

observers data

A.1 Vessel monitoring system data

For this work, we used the complete VMS data from the industrial Peruvian an-

chovy fishing fleet from 2000 to 2009. The entire steel fleet was covered by the VMS

since 2000, while the coverage of the wooden fleet was done progressively over the

years. VMS data is provided on a ∼ 1 hour basis, although some irregularities sel-

dom occur (Fig. A.1). For each VMS record, the following information is provided:

position, date-time (i.e. date and time), name of the vessel, ID (unique code) of the

vessel, and an indicator of accuracy of the position. Over the years, several compa-

nies have provided the VMS service to the fishing companies. They all work with a

global positioning system (GPS), associated with ±100 m of accuracy. CLS, which

at the beginning of the 2000s provided the VMS service to the whole fishing fleet

and nowadays covers ∼ 30%, also uses an Argos system when the position cannot

be estimated by GPS; they are associated with 5 accuracy levels (ranging from 150

m to 1000 m).

Pre-processing of VMS data are performed based on the criteria and algorithms

described in Bertrand et al. (2007, 2005) and Joo et al. (2011). We identify posi-

tions at sea or at port based on their distance to the nearest port and their speed.

We then consider each set of consecutive positions at sea as a trip. To exclude

non-fishing trips, we only retain trips with a minimum speed lower than 3 knots (in-

dicating possible fishing activity). To exclude the few trips targeting other pelagic
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Figure A.1: Histogram of time between records (in hours) for 2008 VMS dataset
(after pre-processing).

species (e.g. jack mackerel), trips from vessels with fishing authorization for multi-

ple species that lasted more than 5 days are not considered (anchovy fishing trips

typically last ∼ 24 hours). Finally, to exclude unreliable fishing trajectories, trips

containing consecutive emissions separated by more than two hours are not kept in

the dataset. Indeed, within an interval of more than two hours, we could be missing

an important segment of the trajectory; even a fishing set could occur. The number

of fishing trips per year kept in the VMS dataset is shown in Table A.1.

A.2 On-board observers data

IMARPE’s program of on-board observers consists in ∼ 25 observers distributed

along the coast of Peru (the number of observers varies each fishing season depend-

ing on the available funding). Each observer registers information related to the

fishing trips, the fishing vessel and the crew of at least one vessel throughout the

fishing season. Key information for short-term adaptive management, such as large

proportions of juveniles in the catches, is reported immediately at the end of the

fishing trip. However, other information, like the sequences of behavioral modes or

activities associated with each fishing trip, are registered in the form of paper-written

logbooks. Part of the information was already typed; for the remaining logbooks,

three persons assisted us for completing that job. Annotation errors as well as typos

could occur, so an algorithm was developed for recognizing possible mistakes, such
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as inexistent or unlikely dates, or durations of behavioral modes suspiciously long or

short, so that the paper-written sheet could be latter reviewed. If there was a typo,

we corrected it. If the information on the sheet did not seem reliable, the trip was

excluded from the dataset. The number of fishing trips per year kept in the logbook

dataset is shown in Table A.1.

The behavioral modes registered by the on-board observers were: cruising (i.e.

traveling following a predetermined course), searching for fish, fishing, drifting, help-

ing other vessel, and receiving or offering catches to other vessel. Receiving/offering

is very odd, and it can occur when a vessel has caught more fish than its holding

capacity and calls a neighbor vessel to ‘share the spoils’. The on-board observers

registered the time at which each behavioral mode started and ended, the position

at departure from port and arrival to port, and the position of each fishing set. This

meant that we had a time-series of the behavioral modes within each fishing trip,

but we could not make an accurate spatial representation of the trajectory followed

(Fig. A.2).

22:05 01:20 06:26 08:12 09:00 11:04 13:15 18:15

Jan 4th, 2007 Jan 5th, 2007

Departure
port: Ilo

Arrival
port: Ilo

(-70.65, 
-18.32)

(-70.55, 
-18.28)

time

geographical
information

Cruising Searching Fishing

Figure A.2: Graphical example of fishing trip information recorded by on-board
observers: time of start and end of each behavioral mode, ports of departure and
arrival, and location (longitude, latitude) of each fishing set.

A.3 The groundtruthed dataset

In order to build a crossed dataset containing the activities information for each

VMS record, two different algorithms were developed (if the reader is not interest

in the description of both algorithms, he or she can go directly to the second al-

gorithm, which we finally chose). The first one basically consists in (1) using the

VMS records from reconstructing fishing trips (as in section A.1) and (2) crossing

the VMS trips with its corresponding logbook trip. We now proceed to explain the

second step. For crossing VMS and logbook trips, in both datasets, we search for
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a trip done by the same vessel (i.e. with the same name, since VMS and logbook

programs use different coding systems for the vessels) at about the same time (the

time of the first and last VMS records are not expected to match exactly the time

of departure and arrival to port, respectively). If the trip meets those conditions,

we extract the date-time of the fishing sets registered in the logbooks and identify

the VMS records corresponding to those date-time. We then compare the positions

of those VMS records with the fishing set positions from the logbooks. If the dis-

tances between associated VMS record and fishing set position are less than 5 nm

(arbitrary choice taking into account time mismatch and vessel speed), we keep the

trip in the crossed dataset.

The second algorithm consists in (1) crossing the VMS records with logbook

trips and (2) verifying if they are fishing trips (conditions from section A.1). We

now proceed to explain the first step. For crossing VMS records and logbook trips,

we search for records corresponding to the same vessel and between the date-time

of departure and arrival to port of a logbook trip. If a sequence of more than 5

consecutive VMS records meets those conditions, we extract the date-time of the

fishing sets registered in the logbooks and identify the VMS records corresponding

to those date-time. We then compare the positions of those VMS records with the

fishing set positions from the logbooks. If the distances between associated VMS

record and fishing set position are less than 5 nm, and also distances between the

first and last VMS records in respect to the departure and arrival positions of the

logbook trip are less than 5 nm, we keep the trip in the crossed dataset. Then, if the

trip meets the conditions from step 2, it remains in the dataset. This is a simplified

version of the algorithm: other factors were taking into account when crossing both

types of data, such as errors in the registration of time of depart and/or arrival by

the on-board observer, or the possibility that the observers watch was ‘out of sync’

with the VMS satellite. Details on how we took into account this factors are not

shown here since they did not produce any changes in the crossed dataset.

Both algorithms were applied on the VMS and logbook data from 2008. With

the first method, a crossed dataset of ∼ 150 trips was obtained. However, with

the second method, a dataset composed of ∼ 300 trips was obtained. We therefore

chose the second algorithm for processing VMS and logbook data from all years. The

number of crossed trips (obtained with the second algorithm) are shown in Table

A.1. Compared to cruising, searching and fishing behavioral modes, a small number

of records are associated with drifting, and almost no records are associated with
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receiving/offering and helping. We consider that there is not enough information

for correctly inferring those three behavioral modes, the final groundtruthed dataset

will incorporated crossed fishing trips containing only fishing, cruising and searching

modes. The number of fishing trips in the new groundtruthed dataset is also shown

in Table A.1.
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Appendix B

Notes on several Viterbi

algorithms

In this appendix, we use the same notations as in section 4.2.

B.1 Model inversion

In many real applications, the observed values are known and the states correspond-

ing to each one of them are not only hidden but also unknown. So the practical

problem actually requires a model inversion: although observations are by definition

state-dependent, we need to, given the observation sequence, find the correspond-

ing hidden (and unknown) states. What we search for is an ‘optimal’ state sequence.

As Rabiner (1989) claims, there are several possible optimality criteria. One

possible and very simple criterion is to choose the states St which are individually

most likely. This optimality criterion maximizes the expected number of correct

individual states. The chosen states at each time t in the sequence are the ones who

maximize the probability

γt(j) = P (St = j | X t
0 = xt0) (B.1)

of being in state j at time t given the observation sequence xt0. So Ŝt = arg max
06j6J

γt(j),

∀t.

A potential problem with this criterion, is that, by determining the most likely

state at every instant, we could end up with a sequence of states which is not likely
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to happen. Therefore, instead of this criterion, we could choose the state sequence

whose probability of occurrence (as a sequence) is maximal. The chosen states would

thus be the ones to maximize the probability

P ∗ = P (ST
0 = sT0 | XT

0 = xT0 ) (B.2)

which is equivalent to maximizing

P (ST
0 = sT0 , X

T
0 = xT0 ) (B.3)

A formal and efficient technique for finding this single best state sequence is

the Viterbi algorithm. In the following section, we present the main features of

the Viterbi algorithm for hidden Markov models (HMMs), then we will introduce

the Viterbi algorithm for hidden semi-Markov models (HSMMs) and some other

extensions (also for HSMMs). Some of the sections will have fonts of smaller sizes

in order to be able to show the large equations.

B.2 Viterbi algorithm for hidden Markov models

Objective: To obtain the most likely sequence

arg max
S0,S1,...,ST

P (ST
0 = sT0 | XT

0 = xT0 ) ≡ arg max
S0,S1,...,ST

P (ST
0 = sT0 , X

T
0 = xT0 ) (B.4)

General ideas:

For each pair (j, t), j ∈ {0, . . . , J} and t ∈ {0, . . . , T}, we need to define

δt(j) = max
S0,S1,...,St−1

P (St−1
0 = st−1

0 , St = j,X t
0 = xt0) (B.5)

The algorithm is started at t = 0 for j ∈ {0, . . . , J}

δ0(j) = P (S0 = j,X0 = x0) = P (X0 = x0 | S0 = j)P (S0 = j) = bj(x0)πj (B.6)

The dynamic programming equation is written as

δt(j) = max
S0,S1,...,St−1

P (St−1
0 = st−1

0 , St = j,X t
0 = xt0) = bj(xt) max

i
{pijδt−1(i)} (B.7)

and we keep track of the argument that maximizes δt(j):
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ψt(j) = arg max
i
{pijδt−1(i)} (B.8)

for j = 0, . . . , J .

Thus, at the end (t = T ) we obtain a probability matrix δ(J+1)×(T+1) and a state

sequence matrix ψ(J+1)×(T+1)

δ =



δ0(0) δ1(0) · · · δt(0) · · · δT (0)
...

...
...

...

δ0(j) δ1(j) · · · δt(j) · · · δT (j)
...

...
...

...

δ0(J) δ1(J) · · · δt(J) · · · δT (J)


;

ψ =



ψ0(0) ψ1(0) · · · ψt(0) · · · ψT (0)
...

...
...

...

ψ0(j) ψ1(j) · · · ψt(j) · · · ψT (j)
...

...
...

...

ψ0(J) ψ1(J) · · · ψt(J) · · · ψT (J)


allowing us to reconstruct the complete sequence by going backwards

S∗t = ψt+1(S∗t+1) (B.9)

Programming procedure:

The complete procedure can be stated as follows (Rabiner, 1989):

1. Initialization:

δ0(i) = πibi(x0) (B.10)

ψ0(i) = 0 (B.11)

for i = 0, . . . , J .

2. Recursion:

δt(j) = max
06i6J

{δt−1(i)pij}bj(xt) (B.12)

ψt(j) = arg max
06i6J

{δt−1(i)pij} (B.13)
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for t = 1, . . . , T and j = 0, . . . , J

3. Termination:

P ∗ = max
06i6J

{δT (i)} (B.14)

S∗T = arg max
06i6J

{δT (i)} (B.15)

4. Path (state sequence) backtracking:

S∗t = ψt+1(S∗t+1) (B.16)

for t = T − 1, T − 2, . . . , 0.

B.3 Viterbi algorithm for hidden semi-Markov mod-

els

The reconstruction of the most likely sequence is analogous to the one of the Viterbi

algorithm for HMMs (section B.2), but in this case, it implies searching for the op-

timal duration for state occupancy. Thus,

Objective: To obtain the most likely sequence

arg max
S0,S1,...,ST ,St+1 6=St

P (ST
0 = sT0 | XT

0 = xT0 )

≡ arg max
S0,S1,...,ST ,St+1 6=St

P (ST
0 = sT0 , X

T
0 = xT0 )

(B.17)

General ideas:

Since the state process is now a semi-Markov process, we define

δt(j) = max
S0,S1,...,St−1

P (St+1 6= j, St = j, St−1
0 = st−1

0 , X t
0 = xt0)

= max

{
max
16u6t

[(
u−1∏
v=1

bj(xt−v)

)
dj(u) max

i6=j
(pijδt−u(i))

]
,

(
t∏

v=1

bj(xt−v)

)
dj(t+ 1)πj

}
× bj(xt) (B.18)

for t = 0, . . . , T−1; j = 0, . . . , J ; and due to the right-censoring of the occupancy

time in the last visited state, for t = T ; j = 0, . . . , J :



B.3 Viterbi algorithm for hidden semi-Markov models 231

δT (j) = max
S0,S1,...,ST−1

P (ST = j, ST−1
0 = sT−1

0 , XT
0 = xT0 )

= max

{
max

16u6T

[(
u−1∏
v=1

bj(xT−v)

)
Dj(u) max

i6=j
(pijδT−u(i))

]
,

(
T∏

v=1

bj(xT−v)

)
Dj(T + 1)πj

}
× bj(xT ) (B.19)

where Dj(u) =
∑

v>u dj(v) is the survivor function for the occupancy time in

state j.

We also keep track of the arguments maximizing δt(j):

ψt(j, 1 : 2) =


(j,t), if

(
t∏

v=1

bj(xt−v)

)
dj(t+ 1)πj > max

16u6t

[(
u−1∏
v=1

bj(xt−v)

)
dj(u) max

i6=j
(pijδt−u(i))

]

arg max
i,u

[(
u−1∏
v=1

bj(xt−v)

)
dj(u)pijδt−u(i)

]
, else

(B.20)

Thus, at the end (t = T ) we obtain a probability matrix δ(J+1)×(T+1) and a state

sequence matrix ψ(J+1)×(T+1)×2 allowing us to reconstruct the complete sequence by

going backwards

P ∗ = max
06i6J

{δT (i)} (B.21)

ŝ = arg max
06i6J

{δT (i)} (B.22)

r̂ = ψT (ŝ, 2) (B.23)

t = T (B.24)

S∗t−r̂+1:t = {s}1×r̂ (B.25)

ŝ = ψt(ŝ, 1) (B.26)

t = t− r̂ (B.27)

Programming procedure:

The complete procedure can be stated as follows (Guédon, 2003):
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1. Initialization:

δ0(j) = P (S1 6= j, S0 = j,X0 = x0)

= P (X0 = x0 | S0 = j)P (S1 6= j | S0 = j)P (S0 = j)

= bj(x0)dj(1)πj

(B.28)

ψ0(j, 1 : 2) = (0, 0) (B.29)

for j = 0, . . . , J .

2. Recursion:

δt(j) = bj(xt)×

max

{
max
16u6t

[(
u−1∏
v=1

bj(xt−v)

)
dj(u) max

i6=j
(pijδt−u(i))

]
,

(
t∏

v=1

bj(xt−v)

)
dj(t+ 1)πj

}
(B.30)

ψt(j, 1 : 2) =



(j,t) , if

(
t∏

v=1

bj(xt−v)

)
dj(t+ 1)πj

> max
16u6t

[(
u−1∏
v=1

bj(xt−v)

)
dj(u) max

i6=j
(pijδt−u(i))

]

arg max
i,u

[(
u−1∏
v=1

bj(xt−v)

)
dj(u)pijδt−u(i)

]
, else

(B.31)

for t = 1, . . . , T − 1 and j = 0, . . . , J ; and

δT (j) = bj(xT )×

max

{
max

16u6T

[(
u−1∏
v=1

bj(xT−v)

)
Dj(u) max

i6=j
(pijδT−u(i))

]
,

(
T∏

v=1

bj(xT−v)

)
Dj(T + 1)πj

}

(B.32)

ψT (j, 1 : 2) =



(j,T − 1) , if

(
T∏

v=1

bj(xT−v)

)
Dj(T + 1)πj

> max
16u6T

[(
u−1∏
v=1

bj(xT−v)

)
Dj(u) max

i6=j
(pijδT−u(i))

]

arg max
i,u

[(
u−1∏
v=1

bj(xT−v)

)
Dj(u)pijδT−u(i)

]
, else

(B.33)
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for t = T and j = 0, . . . , J .

3. Termination:

P ∗ = max
06i6J

{δT (i)} (B.34)

ŝ = arg max
06i6J

{δT (i)} (B.35)

r̂ = ψT (ŝ, 2) (B.36)

4. Path (state sequence) backtracking:

t = T (B.37)

S∗t−r̂+1:t = {s}1×r̂ (B.38)

ŝ = ψt(ŝ, 1) (B.39)

t = t− r̂ (B.40)

for t > 0.

B.4 Forward-backward Viterbi algorithm for hid-

den semi-Markov models

Objective: As in regular Viterbi, to obtain the most likely sequence

arg max
S0,...,ST ,St+1 6=St

P (ST
0 = sT0 | XT

0 = xT0 ) ≡ arg max
S0,...,ST ,St+1 6=St

P (ST
0 = sT0 , X

T
0 = xT0 ) (B.41)

General ideas:

We define

γt(j) = max
S0,...,St−1,St+1,...,ST

P (St−1
0 = st−1

0 , St = j, St+1 6= j, ST
t+1 = sTt+1, X

T
0 = xT0 )

= max
St+1,...,ST

P (XT
t+1 = xTt+1, S

T
t+1 = sTt+1 | St+1 6= j, St = j)

× max
S0,...,St−1

P (St+1 6= j, St = j, St−1
0 = st−1

0 , Xt
0 = xt0) = βt(j)αt(j)

(B.42)

for j = 0, . . . , J ; where
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βt(j) = max
k 6=j

{
pjk max

[(
T∏

v=t+1

bk(xv)

)
Dk(T − t), max

16u26T−1−t

(
βt+u2(k)dk(u2)

t+u2∏
v=t+1

bk(xv)

)]}
(B.43)

for T − 1, . . . , 0;

βT (j) = 1

αt(j) = bj(xt) max

{
max

16u16t

[(
t−1∏

v=t−u1+1

bj(xv)

)
dj(u1) max

i6=j
(pijαt−u1(i))

]
,

(
t−1∏
v=0

bj(xv)

)
dj(t+ 1)πj

}
(B.44)

for t = 0, . . . , T − 1; and due to the right-censoring of the occupancy time in the last

visited state, for t = T ; j = 0, . . . , J :

αT (j) = bj(xT )×

max

 max
16u16T

 T−1∏
v=T+1−u1

bj(xv)

Dj(u1) max
i6=j

(pijαT−u1(i))

,(T−1∏
v=0

bj(xv)

)
Dj(T + 1)πj



(B.45)

We also keep track of the arguments maximizing γt(j):

ψt(j, 1 : 2) =


(j, t), if

(
t−1∏
v=0

bj(xv)

)
dj(t+ 1)πj > max

16u16t

[(
t−1∏

v=t−u1+1

bj(xv)

)
dj(u1) max

i6=j
(pijαt−u1(i))

]

arg max
i,u1

[(
t−1∏

v=t−u1+1

bj(xv)

)
dj(u1)pijαt−u1(i)

]
, else

(B.46)

Thus, at the end (t = T ) we obtain a probability matrix γ(J+1)×(T+1) and a state

sequence matrix ψ(J+1)×(T+1)×2 allowing us to reconstruct the complete sequence by going

backwards
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P ∗ = max
06i6J

{γT (i)} (B.47)

ŝ = arg max
06i6J

{γT (i)} (B.48)

r̂ = ψT (ŝ, 2) (B.49)

t = T (B.50)

S∗t−r̂+1:t = {s}1×r̂ (B.51)

ŝ = ψt(ŝ, 1) (B.52)

t = t− r̂ (B.53)

Programming procedure:

The complete procedure can be stated as follows (Guédon, 2007):

1. Initialization:

α0(j) = bj(x0)dj(1)πj (B.54)

βT (j) = 1 (B.55)

ψ0(j, 1 : 2) = (0, 0) (B.56)

for j = 0, . . . , J .

2. Recursion:

αt1(j) = bj(xt1) max

{
max

16u16t1

[(
t1−1∏

v=t1−u1+1

bj(xv)

)
dj(u1) max

i6=j
(pijαt1−u1(i))

]
, dj(t1 + 1)πj

t1−1∏
v=0

bj(xv)

}
(B.57)

ψt1(j, 1 : 2) =


(j, t1), if

(
t1−1∏
v=0

bj(xv)

)
dj(t1 + 1)πj > max

16u16t1

[
t1−1∏

v=t1−u1+1

bj(xv)dj(u1) max
i6=j

(pijαt1−u1(i))

]

arg max
i,u1

[(
t1−1∏

v=t1−u1+1

bj(xv)

)
dj(u1)pijαt1−u1(i)

]
, else

(B.58)

βt2(j) = max
k 6=j

{
pjk max

[(
T∏

v=t2+1

bk(xv)

)
Dk(T − t2), max

16u26T−1−t2

(
βt2+u2(k)dk(u2)

t2+u2∏
v=t2+1

bk(xv)

)]}
(B.59)
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for t1 = 1, . . . , T − 1; t2 = T − 1, . . . , 0; j = 0, . . . , J ; and

αT (j) (B.60)

=bj(xT ) max

 max
16u16T

 T−1∏
v=T+1−u1

bj(xv)

Dj(u1) max
i6=j

(pijαT−u1(i))

,(T−1∏
v=0

bj(xv)

)
Dj(T + 1)πj


(B.61)

ψT (j, 1 : 2) =



(j, T − 1),

if Dj(T + 1)πj

T−1∏
v=0

bj(xv) > max
16u16T

 T−1∏
v=T+1−u1

bj(xv)Dj(u1) max
i6=j

(pijαT−u1(i))


arg max

i,u1

 T−1∏
v=T+1−u1

bj(xv)

Dj(u1)pijδT−u1(i)

, else

(B.62)

for j = 0, . . . , J . Then

γt(j) = βt(j)αt(j)

for t = 0, . . . , T and j = 0, . . . , J .

3. Termination:

P ∗ = max
06i6J

{αT (i)} (B.63)

ŝ = arg max
06i6J

{αT (i)} (B.64)

r̂ = ψT (ŝ, 2) (B.65)

4. Path (state sequence) backtracking:

t = T (B.66)

S∗t−r̂+1:t = {s}1×r̂ (B.67)

ŝ = ψt(ŝ, 1) (B.68)

t = t− r̂ (B.69)

for t > 0.
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B.5 Constrained forward-backward Viterbi algo-

rithm for hidden semi-Markov models

Here we assume we know that the sequence starts at a given state k and ends at the same

state k, which is what happens in our study case (i.e., all fishing trips start and end at

cruising).

Objective: To obtain the most likely sequence

arg max
S1,...,ST−1,St+1 6=St

P (S0 = k, ST−1
1 = sT−1

1 , ST = k | XT
0 = xT0 )

≡ arg max
S1,...,ST−1,St+1 6=St

P (S0 = k, ST−1
1 = sT−1

1 , ST = k,XT
0 = xT0 )

(B.70)

General ideas:

We define

γt(j) = max
S1,...,St−1,St+1,...,ST−1

P (S0 = k, St−1
1 = st−1

1 , St = j, St+1 6= j, ST−1
t+1 = sT−1

t+1 , ST = k,XT
0 = xT0 )

= max
St+1,...,ST−1

P (XT
t+1 = xTt+1, ST = k, ST−1

t+1 = sT−1
t+1 | St+1 6= j, St = j)

× max
S1,...,St−1

P (St+1 6= j, St = j, St−1
1 = st−1

1 , S0 = k,Xt
0 = xt0) = βt(j)αt(j)

(B.71)

for j = 0, . . . , J ; where

αt(j) =



bj(xt) max

{
max

16u16t−1

[(
t−1∏

v=t−u1+1

bj(xv)

)
dj(u1) max

i6=j
(pijαt−u1(i))

]
, dj(t+ 1)πj

t−1∏
v=0

bj(xv)

}
,

if j = k

bj(xt) max
16u16t

{(
t−1∏

v=t−u1+1

bj(xv)

)
dj(u1) max

i6=j
[pijαt−u1(i)]

}
, else

(B.72)

for t = 1, . . . , T − 1;

α0(j) =

bk(x0)dk(1)πk, if j = k

0, else
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αT (j) =



max

 max
16u16T−1

 T−1∏
v=T+1−u1

bj(xv)

Dj(u1) max
i6=j

(pijαT−u1(i))

, Dj(T + 1)πj

T−1∏
v=0

bj(xv)


×bj(xT ), if j = k

bj(xT ) max
16u16T


 T−1∏

v=T+1−u1

bj(xv)

Dj(u1) max
i6=j

[pijαT−u1(i)]

 , else

βt(j) =



max
l 6=j

{
pjl max

16u26T−1−t

[
βt+u2(l)dl(u2)

t+u2∏
v=t+1

bl(xv)

]}
, if j = k

max{ max
l 6={j,k}

[
pjl max

16u26T−1−t

(
βt+u2(l)dl(u2)

t+u2∏
v=t+1

bl(xv)

)]
,

Dk(T − t)pjk
T∏

v=t+1

bk(xv)}, else

(B.73)

for 0, . . . , T − 2;

βT (j) =

1, if j = k

0, else

βT−1(j) =

0, if j = k

bk(xT )Dk(1)pjk, else

We also keep track of the arguments maximizing γt(j):

ψt(j, 1 : 2) =



(j, t), if j = k &

(
t−1∏
v=0

bj(xv)

)
dj(t+ 1)πj >

max
16u16t−1

[(
t−1∏

v=t−u1+1

bj(xv)

)
dj(u1) max

i6=j
(pijαt−u1(i))

]

arg max
i6=j,u1

[(
t−1∏

v=t−u1+1

bj(xv)

)
dj(u1)pijαt−u1(i)

]
, elseif (j = k & 1 6 u1 6 t− 1)

or elseif (j 6= k & 1 6 u1 6 t)

(B.74)

Thus, at the end (t = T ) we obtain a probability matrix γ(J+1)×(T+1) and a state

sequence matrix ψ(J+1)×(T+1)×2 allowing us to reconstruct the complete sequence by going

backwards
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P ∗ = max
06i6J

{γT (i)} (B.75)

ŝ = arg max
06i6J

{γT (i)} (B.76)

r̂ = ψT (ŝ, 2) (B.77)

t = T (B.78)

S∗t−r̂+1:t = {s}1×r̂ (B.79)

ŝ = ψt(ŝ, 1) (B.80)

t = t− r̂ (B.81)

Programming procedure:

The complete procedure can be stated as follows:

1. Initialization:

α0(j) =

bk(x0)dk(1)πk, if j = k

0, else
(B.82)

ψ0(j, 1 : 2) = (0, 0) (B.83)

α1(j) =

bj(x1)bj(x0)dj(2)πj , if j = k

bj(x1)dj(1)pkjα0(k), else
(B.84)

ψ1(j, 1 : 2) = (1, k) (B.85)

βT (j) =

1, if j = k

0, else
(B.86)

βT−1(j) =

0, if j = k

bk(T )Dk(1)pjk, else
(B.87)

(B.88)

for j = 0, . . . , J .
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2. Recursion:

αt1(j) =



max

{
max

16u16t1−1

[
t1−1∏

v=t1−u1+1

bj(xv)dj(u1) max
i6=j

(pijαt1−u1(i))

]
, dj(t1 + 1)πj

t1−1∏
v=0

bj(xv)

}
×bj(xt1), if j = k

bj(xt1) max
16u16t1

{(
t1−1∏

v=t1−u1+1

bj(xv)

)
dj(u1) max

i6=j
[pijαt1−u1(i)]

}
, else

(B.89)

ψt1(j, 1 : 2) =



(j, t1), if j = k &

(
t1−1∏
v=0

bj(xv)

)
dj(t1 + 1)πj >

max
16u16t1−1

[(
t1−1∏

v=t1−u1+1

bj(xv)

)
dj(u1) max

i6=j
(pijαt1−u1(i))

]

arg max
i6=j,u1

[(
t1−1∏

v=t1−u1+1

bj(xv)

)
dj(u1)pijαt1−u1(i)

]
,

elseif (j = k & 1 6 u1 6 t1 − 1) or elseif (j 6= k & 1 6 u1 6 t1)

(B.90)

βt2(j) =



max
l 6=j

{
pjl max

16u26T−1−t2

[
βt2+u2(l)dl(u2)

t2+u2∏
v=t2+1

bl(xv)

]}
, if j = k

max{ max
l 6={j,k}

[
pjl max

16u26T−1−t2

(
βt2+u2(l)dl(u2)

t2+u2∏
v=t2+1

bl(xv)

)]
,

Dk(T − t2)pjk

T∏
v=t2+1

bk(xv)}, else

(B.91)

for t1 = 2, . . . , T − 1; t2 = T − 2, . . . , 0; j = 0, . . . , J ; and

αT (j) =



max

 max
16u16T−1

 T−1∏
v=T+1−u1

bj(xv)

Dj(u1) max
i6=j

(pijαT−u1(i))

, Dj(T + 1)πj

T−1∏
v=0

bj(xv)


×bj(xT ), if j = k

bj(xT ) max
16u16T


 T−1∏

v=T+1−u1

bj(xv)

Dj(u1) max
i6=j

[pijαT−u1(i)]

 , else

(B.92)
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ψT (j, 1 : 2) =



(j, T − 1), if j = k &

(
T−1∏
v=0

bj(xv)

)
Dj(T + 1)πj >

max
16u16T−1

 T−1∏
v=T+1−u1

bj(xv)

Dj(u1) max
i6=j

(pijαT−u1(i))


arg max
i6=j,u1

 T−1∏
v=T+1−u1

bj(xv)

Dj(u1)pijαT−u1(i)

,

elseif (j = k & 1 6 u1 6 T − 1) or elseif (j 6= k & 1 6 u1 6 T )

(B.93)

for j = 0, . . . , J . Then

γt(j) = βt(j)αt(j)

for t = 0, . . . , T and j = 0, . . . , J .

3. Termination:

P ∗ = max
06i6J

{αT (i)} (B.94)

ŝ = arg max
06i6J

{αT (i)} (B.95)

r̂ = ψT (ŝ, 2) (B.96)

4. Path (state sequence) backtracking:

t = T (B.97)

S∗t−r̂+1:t = {s}1×r̂ (B.98)

ŝ = ψt(ŝ, 1) (B.99)

t = t− r̂ (B.100)

for t > 0.
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Appendix C

Details on the computation of

accuracy, precision, recall and F1

indicators

This appendix refers to indicators of model performance for inferring behavioral

modes (Chapter 4).

Figure C.1 illustrates a sequence starting at time 0 and ending at 11, where the

true behavioral modes are given and compared with the inferred ones. Accuracy is

the percentage of steps where the inferred states correspond to the real ones, so it

is equal to 7/11× 100% = 63.6%.

0 1 2 3 4 5 6 7 8 9 10 11
0inferred

C
0 1 2 3 4 5 6 7 8 9 10 11

0 S F
real

RECALL 1 1 1 0

PRECISION 1 1 1 10

C C S F F C C C

C C C C S S F F CS S

{ { { {

{ { { { {

Figure C.1: Example of a sequence with its real and inferred behavioral modes. 1’s
and 0’s in recall/precision represent a positive or null recall/precision corresponding
to each behavioral mode, respectively. C=cruising, S=searching and F=fishing.

Precision is the percentage of inferred segments where the inferred behavioral

mode corresponds to the true one. An inferred mode m starting at time t and end-

ing at time t + u is said to correspond to a true mode if there is a true mode m

in the time interval [t, t + u] with an associated duration of at least u/2. The u/2
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indicators

threshold responds to the limitations of the time resolution of the sequence (∼ 1 per

hour) and the mean duration of the modes (∼ 2 hours for fishing and searching).

Precision, as well as recall and F1, are computed individually for each behavioral

mode.

In the example of Fig C.1, there are two inferred segments for cruising. Accord-

ing to the definition above, the two inferred cruising segments correspond to true

cruising segments. Thus,

Precision(cruising) = (1 + 1)/2× 100% = 100%

Likewise, for searching and fishing we have:

Precision(searching) = 1/2× 100% = 50%

Precision(fishing) = 1/1× 100% = 100%

Recall is the percentage of real segments where the true mode is correctly in-

ferred. A true mode m starting at time t and ending at time t + u is said to be

correctly inferred if within the time interval [t, t+ u] a behavioral mode m has been

inferred with an associated duration of at least u/2. According to this definition,

we compute for our example:

Recall(cruising) = 1/2× 100% = 50%

Recall(searching) = 1/1× 100% = 100%

Recall(fishing) = 1/1× 100% = 100%

Since F1 is defined as the harmonic mean of recall and precision, we get:

F1(cruising) = 0.667

F1(searching) = 0.667

F1(fishing) = 1



Appendix D

Details on the simulation study:

HMM vs. HSMM for different

time-resolution data

This appendix describes the parameters used for the simulation study described and

discussed in section 4.4.2.

We considered only one observed variable in our simulation, in order to keep

it simple. The probability distribution of this variable conditioned on one state is

Gaussian, with µ = 11 and σ = 3. Its distribution conditioned on the other state is

truncated normal with µ = 6 and σ = 5, and bounded on [0, 25].

The one-second rate state sequence was simulated considering a logistic distri-

bution with parameters µ = 6.89 and s = 1.21 for the duration of one state, and

a generalized extreme value (GEV) distribution with parameters ξ = 0.37, σ = 0.4

and µ = 2.1 for the duration of the other state. For the groundtruthed data study,

logistic and GEV distributions are also used for modeling the duration of two of the

behavioral modes.
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Appendix E

Hybrid models and covariates for

inferring behavioral modes

E.1 Hybrid models

A weakness of the Markovian models seems to be in their observation model. Ob-

served features are often multidimensional, and the appropriated multivariate prob-

ability density function (pdf) is difficult to find. A classical approach is to use

Gaussian mixtures, but then the number of mixtures must be fixed. Another ap-

proach is to assume mutual independence between observed variables and fit an

univariate probability distribution to each one of them. This last approach was

taken. It became difficult to fit pdfs and to find some that passed the goodness-

of-fit tests. Yet, a different approach could be taken. Hybrid models, stated as

Markovian models that rely on the definition of an observation likelihood from the

output of a discriminative model, are proposed in this section. Regarding the results

obtained with the hidden semi-Markov models (HSMMs; section 4.3), the searching

modes were the most difficult to infer. Therefore, hybrid models were evaluated in

terms of both global and searching-mode inference accuracy.

E.1.1 Hybrid HSMM/ANN models

• It has been shown (Richard and Lippmann, 1991) that P (St = j | Xt = xt)

independently at each time t is computed by artificial neural networks (ANNs)

when minimizing MSE.

• The observed likelihood

bj(xt) = P (Xt = xt | St = j) = P (St = j | Xt = xt)P (Xt = xt)/P (St = j)
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• P (Xt = xt) is constant

Thus, maxP (Xt = xt | St = j) ≡ maxP (St = j | Xt = xt)/P (St = j). It is

usual to only use the numerator P (St = j | Xt = xt) term, which is obtained from

ANNs, because a prior on states occurrence might be difficult to establish. Another

possibility would be to approximate P (St = j) as the proportion of j in the training

dataset. We did both: with and without P (St = j) priors.

Another way of using ANNs for the observation term of HSMMs is shown as

following:

b̂j(xt) = exp(β log(P (St = j | Xt = xt)))

where β > 0 and was numerically estimated. Its value was chosen as the one

that maximized hybrid-model performance.

Likewise, the combination of observed variables chosen (see the set of possible

observed variables in section 4.2) was the one that maximized hybrid-model perfor-

mance. Two indicators obeying two different criteria were used for assessing model

performance. The first one was global accuracy. The second one was a weighted

accuracy equal to the mean between fishing, searching and cruising accuracies.

We thus present results for:

1. ANNs (as in Chapter 4)

2. ANNs + HSMMs where b̂j(xt) = P (St = j | Xt = xt) (Hybrid1)

3. ANNs + HSMMs where b̂j(xt) = P (St = j | Xt = xt)/P (St = j) (Hybrid2)

4. ANNs + HSMMs where b̂j(xt) = exp(β log(P (St = j | Xt = xt))) (Hybrid3)

For each one of the hybrid models, ANN parameters, β (for the 4th case) and

observed variables were chosen based on each of the indicators described above. So

for each case we show only the combination of observed variables corresponding to

each of those indicators (Table E.1). In addition, the indicators of performance de-

fined in section 4.2.3, global accuracy and F1 for each behavioral mode, are shown

for comparison purposes. Number of replicas are also shown.



E.2 Covariates 249

Model ANN HSMM Hybrid1 Hybrid2 (prior) Hybrid3 (β)
Acc. Global Global Global Weight Global Weight Weight

Set

sp, sp, sp, sp, sp, sp, sp,
∆sp−1 ∆sp+1 ∆sp+1, ∆sp+1, ∆θ+1 ∆sp+1, ∆sp+1,
∆sp+1, ∆θ+1, ∆θ+1 ∆θ+1 ∆θ+1

∆θ+1 θ

G Acc 79.2 80.3 80.3 80.2 78.1 78.0

FS 56.9 66.7 60.5 59.8 59.8 59.4 < 60
FF 75.4 77.0 82.9 81.5 77.5 82.2
FC 82.1 89.1 88.6 89.2 89.1 89.8

] rep 20 20 20 5 5 5 1

Table E.1: Performance of ANNs, HSMMs and hybrid HSMM/ANN models for
their corresponding best subsets of observed variables (Set), and accuracy criterion
for parameter optimization (Acc). G Acc: global accuracy; FS: F1 for searching;
FF: F1 for fishing; FC: F1 for cruising; ] rep: number of replicas.

Although the fishing and cruising modes were better inferred by hybrid models,

they did not surpass the performance of HSMMs neither for global inference or for

searching-mode inference.

E.1.2 Hybrid HSMM/SVM models

Support vector machine (SVM) optimization functions can also be translated to a

posteriori probabilities (Ganapathiraju et al., 2000). We did the same calculations

for hybrid HSMM/SVM models as for hybrid HSMM/ANN models (Table E.2).

As for HSMM/ANN models, although the fishing and cruising modes were better

inferred by hybrid models, they did not surpass the performance of HSMMs neither

for global inference or for searching-mode inference.

E.2 Covariates

The idea was to use covariates available from the VMS data. Here is a list of the

considered covariates:

• Hour of the day

• Cosinus of hour (because hour is a circular variable)
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Model SVM HSMM Hybrid1 Hybrid2 (prior) Hybrid3 (β)
Acc. Global Global Global Weight Global Weight Global Weight

Set
sp, sp, sp, sp, sp, sp, sp,

∆sp−1, ∆sp+1 ∆sp+1, ∆θ−1 ∆θ+1 ∆θ+1 ∆θ+1

∆sp+1 ∆θ+1

G Acc 79.0 80.3 79.5 79.3 79.1 79.4 80.7

FS 56.9 66.7 58.7 60.8 61.3 62.4 59.0 < 60
FF 75.4 77.0 82.4 80.0 81.8 79.7 77.4
FC 79.8 89.1 88.9 90.5 89.9 89.6 90.8

] rep 20 20 20 5 5 5 1 1

Table E.2: Performance of SVMs, HSMMs and hybrid HSMM/SVM models for their
corresponding best subsets of observed variables (Set), and accuracy criterion for
parameter optimization (Acc). G Acc: global accuracy; FS: F1 for searching; FF:
F1 for fishing; FC: F1 for cruising; ] rep: number of replicas.

• Cumulated time from moment of departure (in hours)

• Cumulated distance from moment of departure (in nm)

• Distance to the coast (in nm)

• Distance to departure port (in nm)

• Distance to arrival port (in nm)

Empirical probability distributions for each of the covariates conditional to each

state are shown in Figure E.1. It should be noticed that covariate densities dis-

tributed alike when fishing and searching. We also computed bivariate correlations

between covariates (Table E.3). Only Cumulated time and Cumulated distance were

strongly correlated.

Since there is no theoretical physic model relating covariates Y to states or to

observed variables, hybrid modeling approaches were used for introducing covariates

into the model. The first one consisted in introducing them directly into the SVM

or ANN observation model. That way,

b̂j(xt) = exp(β1 log(P (St = j | Xt = xt, Yt = yt))) (E.1)

The second approach consisted on using the computed probabilities P (Yt = yt |
St = j) and defining the observation model as:
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(a) Hour of the day (b) Cosinus of hour

(c) Cumulated Hour (d) Cumulated Distance

(e) Distance to the coast (f) Distance to Departure Port

(g) Distance to Arrival Port

Figure E.1: Distribution of covariates conditional to each state. Solid yellow line:
searching; solid blue line: cruising; solid red line: fishing.
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Hour CosH CumH CumDist DistCoast DepPort ArrPort

Hour 1 −0.07 0.28 0.21 −0.08 0.05 −0.04
CosH 1 −0.17 −0.1 −0.15 −0.09 −0.1
CumH 1 0.89 0.04 0.48 −0.08

CumDist 1 0.09 0.67 0.02
DistCoast 1 0.29 0.34
DepPort 1 0.21
ArrPort 1

Table E.3: Partial correlations between covariates. The strongest correlation is in
bold. CosH: cosinus of hour, CumH: cumulated time from moment of departure,
CumDist: cumulated distance from moment of departure, DistCoast: distance to
the coast, DepPort: distance to departure port, ArrPort: distance to arrival port.

b̂j(xt) = exp(β1 log(P (St = j | Xt = xt)))× exp(β2 log(P (Yt = yt | St = j))) (E.2)

for which β2 was estimated in the same way as β1 (see section E.1).

For examining the benefits of using covariates, we gave more importance to

achieving improvements in the inference of the searching mode rather than global

inference. For that reasons, the weighted accuracy indicator is the only criterion

used for choosing observed variables, covariates, ANN/SVM parameter values, and

for estimating β1 and β2. An inferior limit of 0.1 was fixed on bj(xt), so that very

small values would not strongly affect the likelihoods computed through dynamic

programming (appendix B). However, this limit was removed since it worsened the

results. From all the covariate analyses, the best result we obtained was for an

HSMM/ANN hybrid model with sp, ∆sp+1 and θ̂ as observed variables and Cumu-

lative time as covariate, using the approach in equation (E.1). After 20 replicas,

the average result was 80.2% of accuracy, 60.7%, 81.1% and 88.1% of F-score for

searching, fishing and cruising, respectively. It was not better than the one obtained

for the HSMM/ANN Hybrid1 model using global accuracy for parameter calibration

(Table E.1). This was probably due to the fact that no covariate gave information

allowing improvement on searching discrimination (Figure E.1), thus adding more

confusion into the model.

To sum up, HSMMs remained the best models for inferring the behavioral modes.

Since more sophisticated models have not achieved the expected improvements, it



E.2 Covariates 253

is more likely that improvements could be done by increasing the resolution of the

Vessel Monitoring System data, as discussed in section 4.4.3.
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